Skip to main content

Electrolytes

  • Conference paper
Polarographic Oxygen Sensors
  • 321 Accesses

Abstract

In order to provide a properly functioning polarographic oxygen sensor (POS), the electrolyte must be compatible with the oxidation and reduction mechanisms at the electrodes. Furthermore, it should provide a conductive path for the transport of ionic species between the electrodes. In the design of a POS, the choice of the electrolyte is of the utmost importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergman I (1970) Improvements in or relating to membrane electrodes and cells. US Patent 1 200 595

    Google Scholar 

  2. Erdey-Gruz T (1975) Kinetik der Elektrodenprozesse. Akadémiai Kiado, p 273

    Google Scholar 

  3. Friese P, Rösel K-H, Schneiderreit R, Wessler G-R (1975) Meßsonde zur schnellen quantitativen electrochemischen Bestimmung von Gasen, insbesondere von Sauerstoff in flüssigen und/oder gasförmigen Medien. DDR, Patentschrift 114462

    Google Scholar 

  4. Hitchman ML (1978) Measurement of dissolved oxygen. John Wiley &Sons and Orbisphere Laboratories, New York, Maine, p 84, 92, 271

    Google Scholar 

  5. Hoare JP (1968) The electrochemistry of oxygen. Interscience Publ, New York, p 148

    Google Scholar 

  6. Lucero DN (1969) Design of membrane-covered polarographic gas detectors. Anal Chem 41:613

    Article  CAS  Google Scholar 

  7. Niedrach LW, Stoddard WH (1973) Sensor with ion exchange resin electrolyte. US Patent 3719575

    Google Scholar 

  8. Nösel H (1978) Technologie und Methodik zur Messung des Gelöst-Sauerstoffs mit Membran-Elektroden. Selbstverlag Wissenschaftlich-Technische Werkstätten GmbH, Weilheim, p 26

    Google Scholar 

  9. Radhakrishna MN, Roggenkamp RL (1978) CO2 interference free O2 electrode. US Patent 4078981

    Google Scholar 

  10. Scheidegger AE (1960) The physics of flow through porous media, ch 3. Univ Press, Toronto

    Google Scholar 

  11. Schmid M, Mancy KH (1969) The electrochemical determination of dissolved oxygen in water in the presence of hydrogen sulfide. Chimia 23:398

    CAS  Google Scholar 

  12. Scott TF, Brushwyler GR (1976) Dissolved oxygen cell. US Patent 3997419

    Google Scholar 

  13. Tindall GW, Cadle SH, Bruckenstein S (1969) Inhibition of the reduction of oxygen at a platinum electrode by the deposition of a monolayer of copper at underpotentials. J Am Chem Soc 91:2119

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bucher, R. (1983). Electrolytes. In: Gnaiger, E., Forstner, H. (eds) Polarographic Oxygen Sensors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81863-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81863-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81865-3

  • Online ISBN: 978-3-642-81863-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics