Skip to main content

In Situ Measurement of Oxygen Profiles in Lakes: Microstratifications, Oscillations, and the Limits of Comparison with Chemical Methods

  • Conference paper
Polarographic Oxygen Sensors

Abstract

Molecular oxygen is the substance most extensively monitored in scientific and routine investigations of aquatic ecosystems. Oxygen distributions in stratified lakes and departures from atmospheric equilibrium concentrations provide more information on lake characteristics and for water management than any other chemical parameter [8]. Accordingly, the most common application of POS in field ecology is the measurement of dissolved oxygen concentrations along vertical or horizontal transects of aquatic systems. The situation is reflected by the abundance of commercially available in situ oxygen probes (e.g., Delta Scientific, Electronic Instruments Limited, International Biophysics Corporation, Kahlsico International Corporation, Orbisphere Laboratories, Wissenschaftlich-Technische Werkstätten, Yellow Springs Instruments). These sensors incorporate macrocathodes and are commonly equipped with a simple battery-operated stirring device, and most instructions leave no doubt about the ease of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amann E, Gnaiger E (1979) Jahreszeitliche Abhängigkeit der Nahrungszusammensetzung von Regenbogenforellen (Salmo gairdneri) im Kalbelesee (Hochtannberg, Vorarlberg). Oesterr Fisch 32:32–39

    Google Scholar 

  2. Atwood DK, Kinard WF, Barcelona MJ, Johnson EC (1977) Comparison of polarographic electrode and Winkler titration determinations of dissolved oxygen in oceanographic samples. Deep-Sea Res 24:311–314

    Article  CAS  Google Scholar 

  3. Barica J, Mathias JA (1979) Oxygen depletion and winterkill risk in small prairie lakes under extended ice cover. J Fish Res Board Can 36:980–986

    Article  Google Scholar 

  4. Boyd CE, Romaire RP, Johnston E (1978) Prediciting early morning dissolved oxygen concentration in channel catfish ponds. Trans Am Fish Soc 107:484–492

    Article  Google Scholar 

  5. Elgmork K (1959) Seasonal occurrence of Cyclops strenuus strenuus. Folia Limnol Scand 11: 1–196

    Google Scholar 

  6. Gnaiger E, Gluth G, Wieser W (1978) pH fluctuation in an intertidal beach in Bermuda. Limnol Oceanogr 23:851–857

    Article  Google Scholar 

  7. Greenbank JT (1945) Limnological conditions in ice-covered lakes, especially as related to winter-kill of fish. Ecol Monogr 15:343–349

    Article  Google Scholar 

  8. Hutchinson GE (1957) A treatise on limnology. I. Geography ,physics ,and chemistry. John Wiley and Sons ,New York ,pp 1015

    Google Scholar 

  9. Ingvorsen K, Jørgensen BB (1979) Combined measurement of oxygen and sulfide in water samples. Limnol Oceanogr 24:390–393

    Article  CAS  Google Scholar 

  10. Kanwisher JW, Lawson KD, McCloskey LR (1974) An improved ,self-contained polarographic dissolved oxygen probe. Limnol Oceanogr 19:700–704

    Article  Google Scholar 

  11. Kersting K (1978) Automatic continuous oxygen-and temperature-profile measurements. Verh Int Ver Limnol 20:1216–1220

    Google Scholar 

  12. Knowles G ,Lowden GF (1953) Methods for detecting the end-point in the titration of iodine with thiosulfate. Analyst 78: 159–164

    Article  CAS  Google Scholar 

  13. Kushland JA (1979) Temperature and oxygen in an Everglades alligator pond. Hydrobiologia 67:267–271

    Article  Google Scholar 

  14. Lair N ,Restituite F (1976) Projoect alpin O.C.D.E. pour la lutte contre l’eutrophisation. Lacs du massif central francais. II. Le Lac de Tazenat ,interrelation entre paramètres. Ann Stn Biol Besse Chandesse 10:100–144

    Google Scholar 

  15. Lingeman R ,Flik BJG ,Ringelberg J (1975) Stability of the oxygen stratification in a eutrophic lake. Verh Int Ver Limnol 19:1193–1201

    Google Scholar 

  16. Mathias JA, Barica J (1980) Factors controlling oxygen depletion in ice-covered lakes. Can J Fish Aquat Sci 37:185–194

    Article  Google Scholar 

  17. Mortimer CH (1974) Lake hydrodynamics. Mitt Int Ver Limnol 20:124–197

    Google Scholar 

  18. Nagell B, Brittain JE (1977) Winter anoxia. General feature of ponds in cold temperature regions. Int Rev Gesamten Hydrobiol 62:821–824

    Google Scholar 

  19. Pennak RW (1968) Field and experimental winter limnology of three Colorado mountain lakes. Ecology 49:505–520

    Article  Google Scholar 

  20. Poole R, Morrow J (1977) Improved galvanic oxygen sensor for activated sludge. J Water Pollut Contrib Fed March 1977:422–428

    Google Scholar 

  21. Reynolds JF (1969) Comparison studies of Winkler vs. oxygen sensor. J Water Pollut Contrib Fed, Washington, Dec 1969, pp 2002–2009

    Google Scholar 

  22. Ruttner F (1955) Über die Entstehung meromiktischer Zustände in einem kaum drei Meter tiefen Quellsee. Mem Ist Ital Idrobiol 8:265–280

    Google Scholar 

  23. Schindler DW, Comita GW (1972) The dependence of primary production upon physical and chemical factors in a small, senescing lake, including the effects of complete winter ogygen depletion. Arch Hydrobiol 69:413–451

    Google Scholar 

  24. Seki H, Takahashi M, Hara Y, Ichmura S (1980) Dynamics of dissolved oxygen during algal bloom in Lake Kasumigaura. Jpn Water Res 14:179–183

    Article  CAS  Google Scholar 

  25. Tailing JF (1973) The application of some electrochemical methods to the measurement of photosynthesis and respiration in fresh waters. Freshwater Biol 3:335–362

    Article  Google Scholar 

  26. Uhlmann D (1966) Produktion und Atmung im hypertrophen Teich. Verh Int Ver Limnol 16: 934–941

    Google Scholar 

  27. Landinham Van JW, Greene MW (1971) An in situ molecular oxygen profiler. A quantitative evaluation of performance. Mar Technol Soc J 4:11–23

    Google Scholar 

  28. Westerberg H (1972) A free falling polarographic oxygen sensor. Medd Havsfïskelab Lysekil 126:1–25

    Google Scholar 

  29. Webb KL, D’Elia CF (1980) Nutrient and oxygen redistribution during a spring neap tidal cycle in a temperature esturay. Science 207:983–985

    Article  PubMed  CAS  Google Scholar 

  30. Wilcock RJ, Stevenson CD, Roberts CA (1981) An interlaboratory study of dissolved oxygen in water. Water Res 15:321–325

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gnaiger, E. (1983). In Situ Measurement of Oxygen Profiles in Lakes: Microstratifications, Oscillations, and the Limits of Comparison with Chemical Methods. In: Gnaiger, E., Forstner, H. (eds) Polarographic Oxygen Sensors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81863-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81863-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81865-3

  • Online ISBN: 978-3-642-81863-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics