Skip to main content

Bacterial Growth and Antibiotics in Animal Respirometry

  • Conference paper
Polarographic Oxygen Sensors

Abstract

The uncontrolled contribution of bacterial oxygen consumption in animal respirometry respresents a substantial problem and results in an ambiguous reading of the animal’s metabolic rate. This problem became especially important when the application of polarographic oxygen sensors (POS) made possible long-term measurements of the dynamics of an animal’s energy metabolism (which may be superimposed by bacterial growth). Bacterial growth is most rapid on free surfaces [42, 60] such as the inner walls of the animal chamber, but also in the stirring chamber of the POS, valves, connecting tubings, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcaraz M (1974) Respiracicín en crustáceos: Influencia de la concentratión de oxígeno en el medio. Invest Pesq 38:397–411

    Google Scholar 

  2. Bell GR, Hoskins GE, Hodgkiss W (1971) Aspects of the characterization, identification, and ecology of the bacterial flora associated with the surface of stream-incubating Pacific Salmon (Oncorhynchus) eggs. J Fish Res Board Can 28:1511–1525

    Article  Google Scholar 

  3. Berland BR, Maestrini SY (1969) Study of bacteria associated with marine algae in culture. II. Action of antibiotic substances. Mar Biol 3:334–335

    Article  CAS  Google Scholar 

  4. Booth CE, Mangum CP (1978) Oxygen uptake and transport in the lamellibranch mollusc Modiolus demissus. Physiol Zool 51: 17–32

    Google Scholar 

  5. Boyd CM, Johnson MW (1963) Variation in the larval stages of a decapod crustacean, Pleuron codes planipes Stimpson (Galatheidae). Biol Bull 124: 141–152

    Article  Google Scholar 

  6. Brown C, Russo DJ (1979) Ultraviolet light disinfection of shellfish batchery sea water. I. Elimination of five pathogenic bacteria. Aquaculture 17:17–23

    Google Scholar 

  7. Capuzzo JM (1977) The effects of free chlorine and chloramine on growth and respiration rates of larval lobsters (Homarus americanus). Water Res 11: 1021 -1024

    Article  CAS  Google Scholar 

  8. Chernin E (1959) Cultivation of the snail Australorbis glabratus under axenic conditions. Ann NY Acad Sci 77:237–245

    Article  Google Scholar 

  9. Childress JJ (1975) The respiratory rates of midwater crustaceans as a function of depth of occurrence and relation to the oxygen minimum layer of Southern California. Comp Biochem Physiol 50A: 787–799

    Article  Google Scholar 

  10. Colberg PJ, Lingg AJ (1978) Effect of ozonation on microbial fish pathogens, ammonia, nitrate, nitrite and BOD in simulated reuse hatchery water. J Fish Res Board Can 35:1290–1296

    Article  CAS  Google Scholar 

  11. Cooke WB (1956) Colonization of artificial bare areas by microorganisms. Bot Rev 22:613–638

    Article  Google Scholar 

  12. D’Agostino A (1975) Antibiotics in culture of invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York London, pp 109–133

    Google Scholar 

  13. Dungworth DL, Cross CE, Gillespie JR, Plopper CG (1975) The effects of ozone on animals. In: Murphy JS, Orr JR (eds) Ozone chemistry and technology. Franklin Inst Press, Philadelphia, pp 29–54

    Google Scholar 

  14. Duursma EK, Parsi P (1976) Persistence of total and combined chlorine in sea water. Neth J Sea Res 10:192–214

    Article  CAS  Google Scholar 

  15. Fisher WS, Nelson RT (1977) Therapeutic treatment for epibiotic fouling on Dungeness crab {Cancer magister) larvae reared in the laboratory. J Fish Res Board Can 34:432–436

    Article  Google Scholar 

  16. Fisher WS, Nelson RT (1978) Application of antibiotics in the cultivation of Dungeness crab, Cancer magister. J Fish Res Board Can 35:1343–1349

    Article  CAS  Google Scholar 

  17. Fulton C (1959) Re-examination of an inhibitor of regeneration in Tubularia. Biol Bull 116: 232–238

    Article  Google Scholar 

  18. Giese AC, Farmanfarmaian A, Hilden S, Doezema P (1966) Respiration during the reproductive cycle in the sea urchin Strongylocentrotus purpuratus. Biol Bull 130: 192–201

    Article  PubMed  CAS  Google Scholar 

  19. Gnaiger E (1980) Energetics of invertebrate anoxibiosis: Direct calorimetry in aquatic Oligochaetes. FEBS Lett 112(2):239–242; Pharmacological application of animal calorimetry. Thermochim Acta 49:75–85

    Article  PubMed  CAS  Google Scholar 

  20. Goldberg HS (1959) Antibiotics, their chemistry and nonmedical uses. Van Nostrand Co, New Jersey

    Google Scholar 

  21. Green JD, Chapman MA (1977) Temperature effects on oxygen consumption by the copepod Boeckella dilatata. N Z J Mar Freshwater Res 11:375–382

    Article  Google Scholar 

  22. Gyllenberg G (1973) Comparison of the Cartesian diver technique and the polarographic method, an open system, for measuring the respiratory rates in three marine copepodes. Commentat Biol 60:1–13

    Google Scholar 

  23. Hahn FE (1979) Antibiotics, vol V. Mechanism of action of antibacterial agents. Springer, Berlin Heidelberg New York

    Google Scholar 

  24. Harding GCH (1977) Surface area of the Euphansiid Thysanöessa raschii and its relation to body length, weight, and respiration. J Fish Res Board Can 34:225–231

    Article  Google Scholar 

  25. Hash JH (1972) Antibiotic mechanisms. Annu Rev Pharmacol 12:35–56

    Article  PubMed  CAS  Google Scholar 

  26. Helwig H (1973) Antibiotika-Chemotherapeutika. Thieme, Stuttgart

    Google Scholar 

  27. Kempf SC, Dennis Willows AO (1977) Laboratory culture of the nudibranch Tritonia diomedea Bergh (Tritoniidae: Opisthobranchia) and some aspects of its behavioral development. J Exp Mar Biol Ecol 30:261–276

    Article  Google Scholar 

  28. Latter PM (1977) Axenic cultivation of an enchytraeid worm, Cognettia sphagnetorum. Oecologia 31:251–254

    Article  Google Scholar 

  29. Lorian V (1966) Antibiotics and chemotherapeutic agents in dinical and laboratory practice. CC Thomas, Springfield, Illinois, USA

    Google Scholar 

  30. Lough RG, Gonor JJ (1973) A response-surface approach to the combined effects of temperature and salinity on the larval development of Adula californiensis (Pelecypoda: Mytilidae). I. Survival and growth of three and fifteen-day old larvae. Mar Biol 22:241–250

    Article  Google Scholar 

  31. Marshall KC (1972) Mechanism of adhesion of marine bacteria to surfaces. Gaitherburg, Maryland, USA, Proc 3rd Int Congr Mar Corrosion Fouling, October 1972, pp 625–632

    Google Scholar 

  32. Marshall SM, Orr AP (1958) Some uses of antibiotics in physiological experiments in sea water. J Mar Res 17:341–346

    Google Scholar 

  33. Meadows PS (1964) Experiments on substrate selection by Corophium species: Films and bacteria on sand particles. J Exp Biol 41: 499–511

    Google Scholar 

  34. Middaugh DP, Crane AM, Couch JA (1977) Toxicity of chlorine to juvenile spot, Leiostomus xanthurus. Water Res 11:1089–1096

    Article  CAS  Google Scholar 

  35. Moebus K (1972) Factors affecting survival of test bacteria in sea water: marine bacteria, test bacteria and solid surfaces. Helgol Wiss Meeresunters 23:271–285

    Article  Google Scholar 

  36. Morgan RP, Prince RD (1978) Chlorine effects on larval development of striped bass {Morone saxatüis) ,white perch (M. americana) and blueback herring (Alosa aestivalis). Trans Am Fish Soc 107(4):636–641

    Article  CAS  Google Scholar 

  37. Murphy JS, Orr JR (1975) Ozone chemistry and technolog: A review of the literature 1961 -1974. Franklin Inst Press, Philadelphia

    Google Scholar 

  38. Nilson EH, Fisher WS, Shleser RA (1976) A new mycosis of larval lobster (Homarus america nus). J Invertebr Pathol 27:177–183

    Article  PubMed  CAS  Google Scholar 

  39. Poole RL (1966) A description of laboratory-reared zoeae of Cancer magister Dana, and megalopae taken under natural conditions (Decapoda Brachyura). Crustaceana 11:83–97

    Article  Google Scholar 

  40. Quastel JH, Scholefield PG (1951) Biochemistry of nitrification in soil. Bacteriol Rev 15:1–23

    PubMed  CAS  Google Scholar 

  41. Reiner R (1977) Antibiotics. In: Korte F, Goto M (eds) Natural compounds. Part 2: Antibiotics, vitamins and hormones. Thieme, Stuttgart, pp 1–68

    Google Scholar 

  42. Relini G (1974) Colonization patterns of hard marine substrata. Mem Biol Mar Oceanogr 4 (4–5–6):201–261

    Google Scholar 

  43. Sechler GE, Gundersen K (1972) Role of surface chemical composition on the microbial contribution to primary films. Gaithersburg, Maryland, Proc 3rd Int Congr Mar Corrosion Fouling, 1972, pp 610–616

    Google Scholar 

  44. Seegert GL, Brooks AS (1978) The effects of intermittent chlorination on Coho salmon ,Ale-wife, Spottail Shiner and Rainbow Smelt. Trans Am Fish Soc 107:346–353

    Article  CAS  Google Scholar 

  45. Sheldon RW, Evelyn TPT, Parson TR (1967) On the occurence and formation of small particles in sea water. Limnol Oceanogr 12:367–375

    Article  Google Scholar 

  46. Spector WS (1957) Handbook of toxicology, vol II. Antibiotics. W.B. Saunders, Philadelphia London

    Google Scholar 

  47. Spencer CP (1952) On the use of antibiotics for isolating bacteria-free cultures of marine phytoplankton organisms. J Mar Biol Assoc UK 31:97–106

    Article  Google Scholar 

  48. Spotte S (1979) Fish and invertebrate culture. Wiley, New York

    Google Scholar 

  49. Stickney AP (1964) Salinity, temperature, and food requirements of soft-shell clam larvae in laboratory culture. Ecology 45:283–291

    Article  Google Scholar 

  50. Stokinger HE (1965) Ozone Toxicology: A review of research and industrial experience, 1954–1964. Arch Environ Health 10:719–731

    PubMed  CAS  Google Scholar 

  51. Swiss JJ, Johnson MG (1976) Energy dynamics of two benthic crustaceans in relation to diet. J Fish Res Board Can 33:2544–2550

    Article  Google Scholar 

  52. Tuker M (1959) Inhibitory control of regeneration in nemertean worms. J Morphol 105:569–600

    Article  Google Scholar 

  53. Walne PR (1958) The importance of bacteria in laboratory experiments on rearing the larvae of Ostrea edulis (L.). J Mar Biol Assoc UK 37:415–425

    Article  Google Scholar 

  54. Walter AM, Heilmeyer L (1969) Antibiotika-Fibel. Antibiotika und Chemotherapie. Thieme, Stuttgart

    Google Scholar 

  55. Wedemeyer GA, Nelson NC (1977) Survival of two bacterial fish pathogens (Aeromonas salmonicida and the enteric redmouth bacterium) in ozonated, chlorinated, and untreated waters. J Fish Res Board Can 34:429–432

    Article  Google Scholar 

  56. Wedemeyer GA, Nelson NC, Yasutake WT (1979) Physiological and biochemical aspects of ozone toxicity to Rainbow trout (Salmo gairdneri). J Fish Res Board Can 36:605–614

    Article  CAS  Google Scholar 

  57. Wickins JF (1972) Developments in the laboratory culture of the common prawn, Palaemon serratus Pennant. Fish Invest London Ser II 27(4):1–24

    Google Scholar 

  58. Yetka JE, Wiebe WJ (1974) Ecological application of antibiotics as respiratory inhibitors of bacterial populations. Appl Microbiol 28:1033–1039

    PubMed  CAS  Google Scholar 

  59. Zeiss FR (1963) Effects of population densities on zooplankton respiration rates. Limnol Oceanogr 8:110–115

    Article  Google Scholar 

  60. Zobell CE, Anderson DQu (1936) Observations on the multiplication of bacteria in different volumes of stored sea water and the influence of oxygen tension and solid surfaces. Biol Bull 71:324–342

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dalla Via, G.J. (1983). Bacterial Growth and Antibiotics in Animal Respirometry. In: Gnaiger, E., Forstner, H. (eds) Polarographic Oxygen Sensors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81863-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81863-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81865-3

  • Online ISBN: 978-3-642-81863-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics