Skip to main content

The Twin-Flow Microrespirometer and Simultaneous Calorimetry

  • Conference paper
Polarographic Oxygen Sensors

Abstract

Continuous long-term monitoring of respiratory rates in aquatic organisms is only possible in open-flow systems providing controlled environmental conditions during the experiment. This is a basic requirement for many topics in ecophysiological and applied research, and there is an apparent need for more detailed respiratory studies with organisms of different size and under a wide range of conditions. The most important aspects are: metabolic adaptation and acclimation to environmental factors (Chap. II.2); functional relations of oxygen uptake and locomotory activity (Chap. II.5) and growth; internal rhythms (Chap. II.7); quantification of respiratory energy loss complementing assimilation and production measurements in energy budget studies (Chap. III.4); sublethal effects of environmental contaminants; biological oxygen demand in water quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson HJ, Smith L (1973) An oxygen electrode microrespirometer. J Exp Biol 59:247–253

    CAS  Google Scholar 

  2. Belaud A, Trotter Y, Peyraud C (1979) Continuous evaluation of P a .02 Recording and data processing. J Exp Biol 82:321–330

    PubMed  CAS  Google Scholar 

  3. Bishop J (1976) A continuous recording, differential respirometer for a closed, flowing sea-water system. Oikos 27:127–130

    Article  Google Scholar 

  4. Brinkhurst RO, Chua KE, Kaushik N (1972) Interspecific interactions and selective feeding by tubificid oligochaetes. Limnol Oceanogr 17:122–133

    Article  Google Scholar 

  5. Brkovic-Popovic I, Popovic M (1977) Effects of heavy metals on survival and respiration rate of tubificid worms. II. Effects on respiration rate. Environ Pollut 13:93–98

    Article  CAS  Google Scholar 

  6. Calow P (1977) Conversion efficiencies in heterotrophic organisms. Biol Rev 52:385–409

    Article  Google Scholar 

  7. Dermoun Z, Belaich JP (1979) Microcalorimetric study of Escherichia coli aerobic growth: Kinetics and experimental enthalpy associated with growth on succinic acid. J Bacteriol 140: 377–380

    PubMed  CAS  Google Scholar 

  8. Dries RR, Eschweiler L, Theede H (1979) An improved equipment for continuous measurement of respiration of marine invertebrates. Kieler Meeresforsch 4:310–316

    Google Scholar 

  9. Edwards RW, Learner MA (1960) Some factors affecting the oxygen consumption of Asellus. J Exp Biol 37:706–718

    CAS  Google Scholar 

  10. Evans DO (1972) Correction for lag in continuous-flow respirometry. J Fish Res Board Can 29:1214–1216

    Article  Google Scholar 

  11. Fowler JD, Goodnight CJ (1965) The effect of environmental factors on the respiration of Tubifex. Am Midl Nat 74:418–428

    Article  Google Scholar 

  12. Fry FEJ (1971) The effect of environmental factors on the physiology of fish. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic Press, London New York, pp 1–98

    Google Scholar 

  13. Gnaiger E (1979) Direct calorimetry in ecological energetics. Long-term monitoring of aquatic animals. Experientia Suppl 37:155–165

    PubMed  CAS  Google Scholar 

  14. Gnaiger E (1980) Energetics of invertebrate anoxibiosis: Direct calorimetry in aquatic oligochaetes. FEBS Lett 112:239–242

    Article  PubMed  CAS  Google Scholar 

  15. Gnaiger E (1980) Das kalorische Äquivalent des ATP-Umsatzes im aeroben und anoxischen Metabolismus. Thermochim Acta 40:195–223

    Article  CAS  Google Scholar 

  16. Gnaiger E (1980) Direct and indirect calorimetry in the study of animal anoxibiosis. A review and the concept of ATP-turnover. In: Hemminger W (ed) Thermal analysis, vol II. ICTA 80. Birkhäuser, Basel Boston Stuttgart, pp 547–552

    Google Scholar 

  17. Gnaiger E (1980) The enthalpy of growth -a thermodynamic analysis. Abstr 4th Int Symp Microcalorimetry Appl Biol Univ Coll Wales, Aberystwyth

    Google Scholar 

  18. Gnaiger E (1981) Pharmacological application of animal calorimetry. Thermochim Acta 49: 75–85

    Article  CAS  Google Scholar 

  19. Gnaiger E, Lackner R, Ortner M, Putzer V, Kaufmann R (1981) Physiological and biochemical parameters in anoxic and aerobic energy metabolism of embryonic salmonids, Salvelinus alpinus. Eur JPhysiolSuppl391:R57

    Google Scholar 

  20. Gnaiger E, Tiefenbrunner F (1982) Microcalorimetry for continuous monitoring of biological processes. In: Message M (ed) Cell and molecular biology in space. Elsevier North Holland, Amsterdam (in press)

    Google Scholar 

  21. GyUenberg G (1973) Comparison of the Cartesian diver technique and the polarographic method, an open system ,for measuring the respiratory rates in three marine copepods. Commentat Biol 60:3–13

    Google Scholar 

  22. Harnisch P (1935) Versuch einer Analyse des Sauerstoffverbrauchs von Tubifex tubifex Müll. Z Vergl Physiol 22:450–465

    Article  CAS  Google Scholar 

  23. Hart RC (1980) Oxygen consumption in Caridina nilotica (Decapoda Atyidae) in relation to temperature and size. Freshwater Biol 10:215–222

    Article  CAS  Google Scholar 

  24. Herreid CF (1980) Hypoxia in invertebrates. Comp Biochem Physiol 67A:311–320

    Article  CAS  Google Scholar 

  25. Kamler E (1969) A comparison of the closed-bottle and flowing-water methods for measurement of respiration in aquatic invertebrates. Pol Arch Hydrobiol 16:31–49

    Google Scholar 

  26. Kanwisher J (1959) Polarographic oxygen electrode. Limnol Oceanogr 4:210–217

    Article  CAS  Google Scholar 

  27. Kaufmann R, Gnaiger E (1981) Optimization of calorimetric systems: Continuous control of baseline stability by monitoring thermostat temperatures. Thermochim Acta 49:63–74

    Article  Google Scholar 

  28. Kirberger C (1953) Untersuchungen über die Temperaturabhängigkeit von Lebensprozessen bei verschiedenen Wirbellosen. Z Vergl Physiol 35: 175–198

    Article  Google Scholar 

  29. Klekowski RZ (1971) Cartesian diver microrespirometry for aquatic animals. Pol Arch Hydrobiol 18:93–114

    Google Scholar 

  30. Klekowski RZ, Kamler E (1968) Flowing-water polarographic respirometer for aquatic animals. Pol Arch Hydrobiol 15:121–144

    CAS  Google Scholar 

  31. Koenen ML (1951) Vergleichende Untersuchungen zur Atmungsphysiologie von Tubifex tubifex M. und Limnodrilus claparedeanus R. Z Vergl Physiol 33:436–456

    Google Scholar 

  32. Lasserre P, Renaud-Mornant J (1973) Resistance and respiratory physiology of intertidal meiofauna to oxygen-deficiency. Neth J Sea Res 7:290–302

    Article  Google Scholar 

  33. Lovtrup S (1973) The construction of a microrespirometer for the determination of respiratory rates of eggs and small embryos. In: Kerkut G (ed) Experiments in physiology and biochemistry, vol VI. Academic Press, London New York, pp 115–152

    Google Scholar 

  34. Mangum C, Winkle Van W (1973) Responses of aquatic invertebrates to declining oxygen conditions. Am Zool 13:529–541

    Google Scholar 

  35. Milsum JH (1966) Biological control systems analysis. McGraw-Hill Electronic Science Series, New York, 466 pp

    Google Scholar 

  36. Morowitz HJ (1978) Energy flow in biology. Academic Press, London New York, 344 pp

    Google Scholar 

  37. Nagell B (1975) The open-flow respirometric method: precision of measurement in general and description of a high precision respirometer for aquatic animals. Int Rev Gesamten Hydrobiol 60:655–667

    Google Scholar 

  38. Nimi AJ (1978) Lag adjustment between estimated and actual physiological responses conducted in flow-through systems. J Fish Res Board Can 35: 1265–1269

    Article  Google Scholar 

  39. Olson TA, Rueger ME, Scofield JI (1969) Flow-through polarographic respirometry for aquatic animals. Hydrobiologia 34:322–329

    Article  CAS  Google Scholar 

  40. Palmer MF (1970) Aspects of the respiratory physiology of Tubifex tubifex in relation to its ecology. Zool London 154:463–473

    Article  Google Scholar 

  41. Pamatmat MM (1978) Oxygen uptake and heat production in a metabolic conformer (Littorina irrorata) and a metabolic regulator (Uca pugnax). Mar Biol 48: 317–325

    Article  Google Scholar 

  42. Pattee E (1965) Sténothermie et eurythermie les invertébrés d’eau douce et la variation journaliére de tempépature. Ann Limnol 1:281–434

    Article  Google Scholar 

  43. Platzer I (1967) Untersuchungen zur Temperaturadaptation der tropischen Chironomidenart Chironomus strenskei Fittkau (Diptera). Z Vergl Physiol 54:58–74

    Article  Google Scholar 

  44. Richman S (1958) The transformation of energy by Daphnia pulex. Ecol Monogr 28:273–291

    Article  Google Scholar 

  45. Rohde RA (1960) The influence of carbon dioxide on respiration of certain plant-parasitic nematodes. Proc Helminthol Soc Wash 27: 160–164

    CAS  Google Scholar 

  46. Spink C, Wadsö I (1976) Calorimetry as an analytical tool in biochemistry and biology. In: Glick D (ed) Methods in biochemical analysis, vol 23. Wiley-Science, New York, pp 1–159

    Chapter  Google Scholar 

  47. Whitley LS, Sikora RA (1970) The effect of 3 common pollutants on the respiration rate of tubifïcid worms. J Water Pollut Contrib Fed 42:R57–R66

    Google Scholar 

  48. Wightman JA (1977) Respirometry techniques for terrestrial invertebrates and their application to energetics studies. NZJ Zool 4:453–469

    Article  Google Scholar 

  49. Zeuthen E (1950) Cartesian diver respirometer. Biol Bull 98:303–318

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gnaiger, E. (1983). The Twin-Flow Microrespirometer and Simultaneous Calorimetry. In: Gnaiger, E., Forstner, H. (eds) Polarographic Oxygen Sensors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81863-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81863-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81865-3

  • Online ISBN: 978-3-642-81863-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics