Skip to main content

Factors Influencing the Stability of Polarographic Oxygen Sensors

  • Conference paper
Polarographic Oxygen Sensors

Abstract

An ideal polarographic oxygen sensor (POS) exhibits a time-independent relationship between the current it delivers, throughout its specified operating temperature range, and the activity of oxygen contacting its membrane. All applications of POS require stability in some measure, and long-term monitoring applications demand stability over periods up to 1 year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiba S, Huang SY (1969) Oxygen permeability and diffusivity in polymer membranes immersed in liquids. Chem Eng Sci 24:1149–1159

    Article  CAS  Google Scholar 

  2. Aiba S, Ohashi M, Huang SY (1968) Rapid determination of oxygen permeability of polymer membranes. I + EC Fundam 7:479–502

    Google Scholar 

  3. Benedek AA, Heideger WJ (1970) Polarographic oxygen analyzer response: The effect of instrument lag in the non-steady state reaction test. Water Res 4:627–640

    Article  CAS  Google Scholar 

  4. Berkenbosch A (1967) Time course of response of the membrane-covered oxygen electrode. Acta Physiol Pharmacol Neerl 14:300–316

    PubMed  CAS  Google Scholar 

  5. Berkenbosch A, Riedstra JW (1963) Temperature effects in amperometric oxygen determinations with the Clark electrode. Acta Physiol Pharmacol Neerl 12:131–143, 144–156

    PubMed  CAS  Google Scholar 

  6. Borkowski JD, Johnson MJ (1967) Long-lived steam sterilizable membrane probes for dissolved oxygen measurement. Biotech Bioeng IX:635–639

    Article  Google Scholar 

  7. Corrieu G, Touzel JP (1978) Comparaison de sonde de mesure de la concentration en oxygène dissous: Essais au laboratoire. Tech Sci Munic 73:349–356

    Google Scholar 

  8. Gregor HP, Gregor CD (1978) Synthetic-membrane technology. Sci Am 239:88–101

    Article  Google Scholar 

  9. Hale JM, Hitchman ML (1980) Some considerations of the steady state and transient behavior of membrane covered dissolved oxygen detectors. J Electroanal Chem 107:281–294

    Article  CAS  Google Scholar 

  10. Hitchman ML (1978) Measurement of dissolved oxygen. Orbisphere Laboratories, Geneva, p 7

    Google Scholar 

  11. Jensen OJ, Jacobsen T, Thomsen J (1978) Membrane covered oxygen electrodes. I. Electrode dimensions and electrode sensitivity. J Electroanal Chem 87:203–211

    Article  CAS  Google Scholar 

  12. Kaye GWC, Laby TH (1972) Tables of physical and chemical constants, 14th edn. Longman, London, p 222

    Google Scholar 

  13. Kok R, Zajik JE (1973) Transient measurement of low dissolved oxygen concentrations. Can J Chem Eng 51:782–787

    Article  CAS  Google Scholar 

  14. Kolthoff IM, Miller CS (1941) The reduction of oxygen at the dropping mercury electrode. J Am Chem Soc 63:1013–1017

    Article  CAS  Google Scholar 

  15. Krevelen van DW (1972) Properties of polymers. Elsevier, Amsterdam, p 286

    Google Scholar 

  16. Levich VG (1962) Physiochemical hydrodynamics. Prentice Hall, Englewood Cliffs NJ, p 69

    Google Scholar 

  17. Linke WF (1965) Solubilities of inorganic and metal-organic compounds, vol II. Am Chem Soc, Washington DC

    Google Scholar 

  18. Mancy KH, Okun DA, Reilley CN (1962) A galvanic cell oxygen analyzer. J Electroanal Chem 4:65–92

    Article  CAS  Google Scholar 

  19. McKeown JJ, Brown LC, Gove GW (1967) Comparative studies of dissolved oxygen analysis methods. J Water Pollut Control Fed 39:1323–1336

    PubMed  CAS  Google Scholar 

  20. Moore WJ (1972) Physical chemistry, 5th edn. Longman, London, p 250, 300

    Google Scholar 

  21. Pijanowski BJ (1971) A quantitative evaluation of dissolved oxygen instrumentation. Joint conference on sensing of environmental pollutants, Palo Alto, Calif

    Google Scholar 

  22. Randies JEB (1952) Kinetics of rapid electrode reactions, part 2. Rate constants and activation energies of electrode reactions. Trans Faraday Soc 48:828–832

    Article  Google Scholar 

  23. Schuler R, Kreuzer F (1967) Rapid polarographic in vivo oxygen catheter electrodes. Respir Physiol 3:90–110

    Article  PubMed  CAS  Google Scholar 

  24. Schumpe A, Deckwer WD (1978) Oxygen solubilities in synthetic fermentation media. Preprints, 1st Eur Cong Biotechnol, Interlaken, pp 154–155

    Google Scholar 

  25. Setschenow J (1889) Concerning the constitution of salt solutions on the basis of their behavior to carbonic acid. Z Phys Chem 4:117–125

    Google Scholar 

  26. Winkler LW (1889) The determination of dissolved oxygen in water. Ber Dtsch Chem Ges 22: 1764–1774

    Article  Google Scholar 

  27. Yatskovski AM, Fedotov AN (1969) Solubility and diffusion of oxygen in solutions of potassium hydroxide and phosphoric acid. Electrokhimiya 5:1052–1053

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hale, J.M. (1983). Factors Influencing the Stability of Polarographic Oxygen Sensors. In: Gnaiger, E., Forstner, H. (eds) Polarographic Oxygen Sensors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81863-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81863-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81865-3

  • Online ISBN: 978-3-642-81863-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics