Skip to main content

General Principles of Control Synthesis of Robots and Manipulators

  • Chapter
Control of Manipulation Robots

Part of the book series: Communications and Control Engineering Series ((1186,volume 2))

  • 217 Accesses

Abstract

Robots and manipulators belong to the class of nonlinear, multivariable mechanical systems with several inputs and outputs. If considered to have no environmental effects (or known, determined environmental effects), they represent a deterministic, dynamic system which often has a variable structure. As regards mechanical characteristics, robots and manipulators belong to the class of large-scale spatial mechanisms and to the type of open and closed active kinematic chains, since certain degrees of freedom are powered by appropriate actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Popov E.P., Vereschagin A.F., Zenkevich S.L., Manipulation Robots: Dynamics and Algorithms, (in Russian), Series “Scientific Fundamentals of Robotics”, Nauka, Moscow, 1978.

    Google Scholar 

  2. Okhotsimskii D.E., et al., “Control of Integral Locomotion Robots”, (in Russian), Proc. VI IFAC Symp. on Autom. Contr. in Space, Erevan, USSR, 1974.

    Google Scholar 

  3. Medvedov B.S., Leskov A.G., Yuschenko A.S., Systems of Manipulation Robots Control, (in Russian), Series “Scientific Fundamentals of Robotics”, edited by E.P.Popov, Nauka, Moscow, 1978.

    Google Scholar 

  4. Vukobratovid K.M., “How to Control the Artificial Anthropomorphic Systems”, IEEE Trans. on Systems, Man and Cybernetics, SMC-3, 497–507, 1973.

    Google Scholar 

  5. Beograd, 1975, Also Published by Mir, Moscow, 1976 (in Russian).

    Google Scholar 

  6. Vukobratovid K.M., V.S. Cvetkovid, D.M. Stokid, Airplane Flight Dynamics and its Application, (in Serbian), Monograph “Mihailo Pupin” Institute, Beograd, 1980.

    Google Scholar 

  7. Sandell N.R., P. Varaiya, M. Athans, M.G. Safonov, “Survey of Decentralized Control Methods for Large-Scale Systems”, IEEE Trans. on Automatic Control AC-23, 108–128, 1978.

    Google Scholar 

  8. Siljak D.D., Large-Scale Dynamic Systems: Stability and Structure, North-Holland, New York, 1978.

    MATH  Google Scholar 

  9. Vukobratovid K.M., D.M. Stokid, “Simplified Control Procedure of Strongly Coupled Complex Nonlinear Mechanical Systems”, (in Russian), Avtomatika and telemechanika, No 11, also in English, Autom. and Remote Control, Vol. 39, No 11, 1978.

    Google Scholar 

  10. Vukobratovid K.M., D.M. Stokid, “Contribution to the Decoupled Control of Large-Scale Mechanical Systems”, Automatica, Jan. No 1, 1980.

    Google Scholar 

  11. Davison E.J., “The Robust Decentralized Control of a General Servomechanism Problem”, IEEE Tran. on Automatic Control, AC-21, 14–24, 1976.

    Google Scholar 

  12. Vukobratovid K.M., D.M.Stokid, D.S.Hristid, “Algorithmic Control of Anthropomorphic Manipulators”, (in Russian), Izvestiya AN USSR, Teknicheskayakibernetika, No 3, 1976.

    Google Scholar 

  13. Kuleshev V.S., Lakhota N.A., Dynamics of Manipulator Control Systems, (in Russian), Energiya, Moscow, 1971.

    Google Scholar 

  14. Artobolevskii I.I., Theory and Design of Manipulators, (in Russian), Proc. papers, edited by Artobolevskii, Nauka, Moscow, 1970

    Google Scholar 

  15. Popov E.P., Robots-Manipulators, (in Russian), Znanie, Moscow, 1974.

    Google Scholar 

  16. Paul C.R., Modelling,Trajectory Calculation and Servoing of a Computer Controlled Arm. (in Russian), Nauka, Moscow, 1976.

    Google Scholar 

  17. Vukobratovid K.M., D.S.Hristi, D.M.Stokie, “Algorithmic Control of Anthropomorphic Manipulators”, Proc. of V Intern. Symp. on Industrial Robots, Chicago, Illinois, Sept. 1975.

    Google Scholar 

  18. Vukobratovid K.M., et al., “New Method of Artificial Motion Synthesis and its Application to Locomotion Robots and Manipulators”, Proc. of 7th IFAC Symp. on Automatic Control in Space, Munich, 1976.

    Google Scholar 

  19. Vukobratovid K.M., D.M. Stokid, N.V. Gluhajid, D.S. Hristid, “One Method of Control for Large-Scale Humanoid Systems”, Mathematical Biosciences, Vol. 36, No 3/4, 1977.

    Google Scholar 

  20. Vukobratovid K.M., D.M.Stokid, “Significance of Force Feedback in Controlling Artificial Locomotion-Manipulation Systems”, Transaction on Biomedical Engineering, December, 1980.

    Google Scholar 

  21. Okhotskimskii D.E., et al., “Stabilization Algorithm of Automatic Locomotion System”, (in Russian), Proc. VI IFAC Symp. on Automatic Control in Space, Erevan, USSR, 1974.

    Google Scholar 

  22. McGhee B.R., C.S. Chao, V.C. Jaswa D.E. Orin, “Real-Time Computer Control of a Hexapod Vehicle”, Proc. of III CISM - IFToMM Sym posium on Theory and Practice of Robots and Manipulators, Udine, 1978.

    Google Scholar 

  23. Vukobratovid A. Frank, D.Juricid, “On the Stability of Biped Locomotion”, Trans. IEEE, Biomedical Engineering, January, 1970.

    Google Scholar 

  24. Vukobratovid K.M., Y. Stepanenko, “On the Stability of Anthropomorphic Systems”, Mathematical Biosciences, Vol. 15, October, 1972

    Google Scholar 

  25. Vukobratovid K.M., et al., “Analysis of Energy Demand Distribution within Anthropomorphic Systems”, Trans. of the ASME, Journal of Dynamic Systems, Measurement and Control, Dec., 1973.

    Google Scholar 

  26. Vukobratovid K.M., “Dynamics and Control of Anthropomorphic Active Mechanisms”, Proc. 1st IFToMM Symp. on Theory and Practice of Robots and Manipulators, Udine, Italy, 1973.

    Google Scholar 

  27. Vukobratovid K.M., D.M. Stokid, “Dynamic Stability of Unstable Legged Locomotion Systems”, Mathematical Biosciences, Vol. 24, No 1/2, 1975.

    Google Scholar 

  28. Vukobratovid K.M., D.M. Stokid, “Postural Stability of Anthropomorphic Active Mechanisms”, Mathematical Biosciences, Vol. 25., No 3/4, 1975.

    Google Scholar 

  29. Vukobratovid K.M., D.M. Stokid, “Dynamic Control of Unstable Locomotion Robots”, (in Russian), Izvestiya AN USSR, Teknicheskaya kibernetika, No 5, 1975.

    Google Scholar 

  30. Vukobratović K.M., et al., “Synergetic Control Principle of Anthropomorphic Movements”, Proc. of Second IFToMM Symp. on Theory and Practice of Robots and Manipulators, Warsaw, 1976.

    Google Scholar 

  31. Vukobratović K.M., D.M. Stokid, “Postural Stability of Anthropomorphic Systems”, (in Russian), Izvestiya AN USSR Teknicheskaya kibernetika, No 5, 1978.

    Google Scholar 

  32. Stokid M.D., M.K. Vukobratovid, “Dynamic Control of Biped Posture”, Mathematical Biosciences, Vol. 44, No 2, 1979.

    Google Scholar 

  33. Beletski V.V., P.S. Tshudinov, “Nonlinear Models of Biped Gait”, (in Russian), Repr. No. 19 of the USSR Academy of Sciences, 1975.

    Google Scholar 

  34. Beletski V.V., Golubkov E.A.,“Task of Modelling the Dynamics of Underwater Biped Gait”, (in Russian), Reprint No. 42 of the USSR Academy of,Sciences, 1979.

    Google Scholar 

  35. Lawrence P.D., Cybernetic Coordination in The Control of a Powered Arm, Ph. Dissertation, Case Western Reserve University Cleveland, Ohio, 1970.

    Google Scholar 

  36. Kobrinskii A.A., Kobrinskii A.E., “About Motion Design of Manipulation Systems”, (in Russian), Izvestiya AN USSR, Teknicheskaya kibernetika No 2, 1978.

    Google Scholar 

  37. Whitney D.E., “Resolved Motion Rate Control of Manipulators and Human Prosthesis”, IEEE Trans. on M.M.S., Vol. 10, No 2, June, 1969

    Google Scholar 

  38. Renaud M., Contribution a L’etude de la Modelisation et de la Commande des Systemes Mechaniques Articules, Ph. Thesis, University “Paul Sabatier”, Toulouse, 1975.

    Google Scholar 

  39. Vereschagin A.F., V.L.Generozov, “Planning of the Actuator Trajectories of Manipulation Robot”, (in Russian), Izvestiya AN USSR, Teknicheskaya kibernetika, No 2, 1978.

    Google Scholar 

  40. Paul C.R., “Cartezian Coordinate Control of Robots in Joint Coordinates”, Proc. III IFToMM Internat. Symp. on Theory and Practice of Robots and Manipulators, Udine, 1978.

    Google Scholar 

  41. Luh S.J.Y., C.S. Lin, “Optimum Path Planning for Mechanical Manipulators”, Journal of Dynamic Systems Measurement and Control, Trans. of the ASME, Vol. 103, No 2, pp. 142–151, 1981.

    Article  Google Scholar 

  42. Kahn M.E., B. Roth, “The Near Minimum Time Control of Open Loop Articulated Kinematic Chains”, Trans. of the ASME, Journal of Dynamic Systems, Measurement and Control, September, 164–172, 1971.

    Google Scholar 

  43. Bejczy A.K., Robot Arm Dynamic and Control, JET Propulsion Laboratory NASA Technical Memorandum 33–669 - February 15, 1974.

    Google Scholar 

  44. Pavlov B.A., Timofeyev A.B., “Calculation and Stabilization of Programmed Motion of a Moving Robot-Manipulator”, (in Russian), Teknicheskaya kibernetika, No. 6, 91–101, 1976.

    Google Scholar 

  45. Timofeyev A.V., J.V. Ekalo, “Stability and Stabilization of Programmed Motion of Robots-Manipulators”, (in Russian), Avtomatika and Telemechanika, No 10, 148–156, 1976.

    Google Scholar 

  46. Saridis N.G., C.S.G. Lee, “An Approximation Theory of Optimal Control for Trainable Manipulators”, IEEE Trans. on Systems, Man, and Cybernetics, Vol. SMC-9, No 3, pp. 152–159, 1979.

    Article  MathSciNet  Google Scholar 

  47. Kulakov F.M., “Organization of Supervisory Control of Robots--Manipulators”, (in Russian), Teknicheskaya kibernetika, Part I: No 5, 37–46, Part II: No 6, 78–90, 1976, Part III: No 1,51–66, 1977.

    Google Scholar 

  48. Takengaki M., S. Arimoto, “A New Feedback Method for Dynamic Control of Manipulators”, Journal of Dynamic Systems, Measurement and Control, Trans. of the ASME, Vol. 103, No 2, pp. 119–125, 1981.

    Article  Google Scholar 

  49. Luh J.Y.S., Walker M.W., R.P.C. Paul, “On-line Computational Scheme for Mechanical Manipulators”, Trans. of the ASME, Journal of Dynamic Systems, Measurement and Control, 1980.

    Google Scholar 

  50. Luh J.Y.S., M.W. Walker and R.P.C. Paul, “Resolved-Acceleration Control of Mechanical Manipulators”, IEEE Trans, on Automatic Control, Vol. AC-25, No 3, pp. 468–474, 1980.

    Article  Google Scholar 

  51. Popov E.P., Vereschagin A.F., Ivkin A.M., Leskov A.S., Medvedov V.S., “Synthesis of Control System of Robots Using Dynamic Models of Manipulation Mechanisms”, (in Russian), Proc. VI IFAC Symp. on Autom. Contr. in Space, Erevan, USSR, 1974.

    Google Scholar 

  52. Filaretov B.F., “Synthesis of Nonlinear Tracking Systems for Manipulator Control with Clearance, Dry Friction and Elastic Deformation”, (in Russian), Teknicheskaya kibernetika, No 6, 58–67, 1976.

    Google Scholar 

  53. Vukobratovid K.M., D.M. Stokid, “Choice of Decoupled Control Law of Large Scale Mechanical Systems”, Proc. of Second Symp. on Large-Scale Systems:Theory and Applications, Toulouse, 181–192, 1980, also in Large-Scale Systems-Theory and Application, June, 1981.

    Google Scholar 

  54. Yuan J.S.C., “Dynamic Decoupling of a Remote Manipulator System”, JACC, San Francisco, 1977.

    Google Scholar 

  55. Freund E., “A Nonlinear Control Concept for Computer-Controlled Manipulators”, Proc. of VII Intern. Symposium on Industrial Robots, Tokyo, 1977.

    Google Scholar 

  56. Roessler J., “A Decentralized Hierarchical Control Concept for Large-Scale Systems”, Proc. II Sympos. on Large-Scale Systems: Theory and Applications, Toulouse, 171–180, 1980.

    Google Scholar 

  57. Hewit R.J., J.S. Burdess, “Fast Dynamic Decoupled Control for Robotics, Using Active Force Control”, Mechanism and Machine Theory, Vol. 16, No 5, pp. 535–542, 1981.

    Article  Google Scholar 

  58. Young K.K.D., “Controller Design for a Manipulator Using Theory of Variable-Structure Systems”, IEEE Trans. on Systems, Man and Cybernetics, Vol. SMC-8, 1978.

    Google Scholar 

  59. Dubowsky S., D.T. DesForges, “The Application of Model-References Adaptive Control to Robotic Manipulators”, Trans. of the ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 101, No. 3, pp 193–200, 1979.

    Article  MATH  Google Scholar 

  60. Dubowsky S., “On the Dynamics of Computer Controlled Robotic Manipulators”, Preprints of IV CISM - IFToMM Symp. on Theory and Practice of Robots and Manipulators,pp. 89–98, Warsaw, 1981.

    Google Scholar 

  61. Nevins J., D. Whitney et al., Exploratory Research in Industrial Modular Assembly, Report R-996, The Charles Stark Draper Laboratory, Cambridge, Mass, 1976.

    Google Scholar 

  62. Nevins J., D. Whitney, “Research Issues for Automatic Assembly”, Proc. I IFAC/IFIP Symp. on Information Control Problems in Manufacturing Technology, Tokyo, 1977.

    Google Scholar 

  63. Nevins J., T.B. Sheridan, D.F. Whitney, A.F. Woodin, “The Multi--Model Remote Manipulating System”, Proc. I Conference on Remotely Manned Systems, Calif. Inst. of Technology, 1973.

    Google Scholar 

  64. Bejczy A., “Manipulation of Large Objects”, Proc. of III IFToMM Internat. Symp. on Theory and Practice of Robots and Manipulators, Udine., 1978.

    Google Scholar 

  65. Nishimoto K., T. Uchiyama, K. Tamamushi, T. Akita, “Small-Sized Robot With High Positioning Accuracy”, Preprints of IV CISM - IFToMM Symposium on Theory and Practice of Robots and Manipulators, pp. 170–179, Warsaw, 1981.

    Google Scholar 

  66. Vukobratovic M., Potkonjak V.,“Elastic Properties in Dynamic Models of Industrial Manipulators”,IFTOMM Journal of Mechanism and Machine Theory, V.l. 16, No 2, 1982.

    Google Scholar 

  67. Book J.W., O. Maizza-Meto, D.E. Whitney, “Feedback Control of Two Beam, Two Joint Systems With Distributed Flexibility”, Journal of Dynamic Systems Measurement and Control, Trans. of the ASME, Vol. 97, pp. 424–431, December, 1975.

    Article  Google Scholar 

  68. Truckenbrodt A., “Modelling and Control of Flexible Manipulator Structure”, Preprints of IV CISM-IFTOMM Symposium on Theory and Practice of Robots and Manipulators, pp. 110–120, Warsaw, 1981.

    Google Scholar 

  69. Raibert H.M., J.J. Craig, “Hybrid Position/Force Control of Manipulators”, Journal of Dynamic Systems, Measurement and Control, Trans. of the ASME, Vol. 103, No 2, pp. 126–133, 1981.

    Article  Google Scholar 

  70. Vukobratovié K.M., D.M. Stokie, “One Engineering Concept of Dynamic Control of Manipulators”, Journal of Dynamic Systems, Measurement and Control, Trans. of the ASME, Vol. 103, No 2, pp. 108–118, 1981.

    Article  Google Scholar 

  71. Rosenbrock, N.H., P.D. McMorran, “Good, Bad, or Optimal”, IEEE Trans. on Automatic Control, Vol. AC-16, December, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Vukobratović, M., Stokić, D. (1982). General Principles of Control Synthesis of Robots and Manipulators. In: Control of Manipulation Robots. Communications and Control Engineering Series, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81857-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81857-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81859-2

  • Online ISBN: 978-3-642-81857-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics