Skip to main content

Dielectric and Optical Anomalies Near the Anderson Metal-Insulator Transition

  • Conference paper
Anderson Localization

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 39))

Abstract

The linear response expressions for the dielectric constant and conductivity as functions of wave number and frequency are evaluated near the localization metal-insulator transition for noninteracting quasiparticles. New behavior is found in the microscopic range. The static dielectric constant from the insulating side is found to diverge with twice the exponent characterizing the vanishing of the conductivity from the metallic side. The optical properties of the system are analyzed in the macroscopic conducting and insulating phases as well as in the microscopic regime. Interesting changes in the behavior for a given material as a function of frequency were found. The dynamic structure factor follows easily from our expressions and we suggest that it can be measured in principle using high-frequency electromagnetic radiation.

Research supported in part by the U.S. — Israel Binational Science Foundation (BSF), Jerusalem, Israel.

On leave of absence from the Department of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Israel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See e.g. P. Nozieres, Interacting Fermi Systems, Benjamin (1964); C. Kittel, Quantum Theory of Solids, Wiley (1963).

    Google Scholar 

  2. E. Abrahams, P. W. Anderson, D. C. Licciardello and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

    Article  ADS  Google Scholar 

  3. A. L. Efros and B. I. Shklovskii, Phys. Status Solidi B76; 475 (1976);

    Article  Google Scholar 

  4. V. E. Dubrov, M. E. Levinshtein and M. S. Shur, Z. Eksper. Teor. Fiz. 70, 2014 (1976)

    Google Scholar 

  5. V. E. Dubrov, M. E. Levinshtein and M. S. Shur, Z. Eksper. Sov. Phys. JETP 44, 1050 (1976)

    ADS  Google Scholar 

  6. D. J. Bergman and Y. Imry, Phys. Rev. Lett. 39, 1222 (1977);

    Article  ADS  Google Scholar 

  7. This type of effect was seen experimentally by D. M. Grannan, J. C. Garland and D. B. Tanner, Phys. Rev. Lett. 46, 375, (1981).

    Article  ADS  Google Scholar 

  8. A. Aharony and Y. Imry, J. Phys C10, L487 (1977)

    Google Scholar 

  9. A. Aharony and Y. Imry, J. Phys C10, L487 (1977); b) H. G. Schuster, Z. Phys. 31, 99 (1978).

    MathSciNet  Google Scholar 

  10. W. Götze, J. Phys. C12 1279 (1979), made an approximate calculation of e(q,w) and a(q,w) near the localization yielding (1) but differing from (9) due to a gap in the excitation spectrum in the insulating phase;

    ADS  Google Scholar 

  11. D. Vollhardt and P. Wölfle, Phys. Rev. B22 4678 (1980), derived a systematic expansion for the response functions at and below two dimensions. P Wölfle (these proceedings) discussed the generalization of this work (D. Vollhardt and P. Wölfle, unpublished) to higher dimensions.

    Google Scholar 

  12. B. L. Altshuler and A. G. Aronov, Zh. Eksper. Teor. Fiz. 77, 2028 (1979)

    Google Scholar 

  13. B. L. Altshuler and A. G. Aronov, Zh. Eksper. Soy. Phys. JETP 55, 968 (1979).

    ADS  Google Scholar 

  14. B. L. Altshuler, A. G. Aronov and P. A. Lee, Phys. Rev. Lett. 44, 1288 (1980);

    Article  ADS  Google Scholar 

  15. c) P. A. Lee, unpublished.

    Google Scholar 

  16. N. F. Mott, Metal Insulator Transitions, ( Taylor and Francis, London, 1974 ).

    Google Scholar 

  17. G. Toulouse, J. Phys. 36, 1137 (1975).

    Article  Google Scholar 

  18. M. Capizzi, G. A. Thomas, F. de Rosa, R. N. Bhatt and T. M. Rice, Solid State Commun. 33, 793 (1980).

    Article  Google Scholar 

  19. T. F. Rosenbaum, K. Andres, G. A. Thomas and R. N. Bhatt, Phys. Rev. Lett. 45, 1723 (1980).

    Article  ADS  Google Scholar 

  20. M. Capizzi, G. A. Thomas, F. de Rosa, R. N. Bhatt and T. M. Rice, Phys. Rev. Lett. 44, 1019 (1980).

    Article  ADS  Google Scholar 

  21. T. G. Castner, N. K. Lee, G. S. Cieloszyk and G. L. Salinger, Phys. Rev. Lett. 34, 1627 (1975).

    Article  ADS  Google Scholar 

  22. A similar heuristic argument had been previously given in [9b]. The authors are grateful to G. A. Thomas and F. Wegner for useful discussions on this subject. In the present work, the independence of A on disorder for noninteracting quasiparticles is established.

    Google Scholar 

  23. is the characterisitic coherence length around the localization transition2. Its physical significance in the metallic state is discussed by Y. Imry, Phys. Rev. Lett 44, 469 (1980).

    Article  ADS  Google Scholar 

  24. F. Wegner, Z. Phys. 25, 327 (1976).

    Google Scholar 

  25. F. Wegner, pp. 302 in: Amorphous and Liquid Semiconductors, Proc. of the 7th International Conference, W. E. Spear, ed., University of Edinburgh (1977).

    Google Scholar 

  26. a) E. Abrahams, P. W. Anderson, P. A. Lee and T. V. Ramakrishnan, unpublished.

    Google Scholar 

  27. W. L. McMillan, Phys. Rev. B24, 2739 (1981).

    Article  ADS  Google Scholar 

  28. M. Kaveh and N. F. Mott, J. Phys. C14, L177, (1981).

    ADS  Google Scholar 

  29. d) M. Azbel has remarked to us that these expressions also follow easily from the well-known, quasi-classical approximation for the matrix elements.

    Google Scholar 

  30. L. Van Hove, Phys. Rev. 95, 249 (1954)

    Article  MATH  ADS  Google Scholar 

  31. G. Vineyard, Phys. Rev. 110, 99 (1958).

    Article  ADS  Google Scholar 

  32. Apart from logarithmic corrections, the low frequency behavior of (9) agrees in order of magnitude with Mott’s result in the insulating phase (N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Pergamon, 2nd edition, Oxford, 1979) for strong localization, where becomes comparable to the microscopic length. However, (9) predicts a E5 increase[12b] of the coefficient of w2 when the insulator becomes weak, approaching the transition with diverging E, along with a vanishing of the range of the w2 behavior.

    Google Scholar 

  33. Y. Imry, J. App. Phys. 52, 1817 (1981).

    Article  ADS  Google Scholar 

  34. Eqs. (9) and (10) imply that at the metal-insulator transition σ(0,ω)~ω1/3, a result[12] which has recently also been obtained by B. Shapiro and E. Abrahams, unpublished. From our expression for e in the insulating phase and (11), we find likewise that at the transition ε(0,ω)~ω−2/3. These results were first reported in [18].

    Google Scholar 

  35. Y. Imry, Y. Gefen and D. J. Bergman to be published

    Google Scholar 

  36. J. Ziman, Principles of the Theory of Solids, Cambridge (1969).

    Google Scholar 

  37. Z. Ovadyahu and Y. Imry, Phys. Rev. B, Rapid Communications, in Press; Z. Ovadyahu, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Imry, Y., Gefen, Y., Bergman, D.J. (1982). Dielectric and Optical Anomalies Near the Anderson Metal-Insulator Transition. In: Nagaoka, Y., Fukuyama, H. (eds) Anderson Localization. Springer Series in Solid-State Sciences, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81841-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81841-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81843-1

  • Online ISBN: 978-3-642-81841-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics