Role of Connective Tissue in the Arterio-Atherosclerotic Process. Interest of a Cell-Matrix Directed Pharmacology

  • L. Robert
  • W. Hornebeck
  • A. M. Robert
Conference paper


Vascular wall of all sizes from capillaries to the large arterial trunks contain cells and intercellular matrix variable in quantity (cell/matrix ratio), and also in quality (nature and relative amount of matrix macromolecules). Capillaries contain basement membranes elaborated by endothelial cells and perhaps pericytes. Basement membranes are known to be composed of several matrix macromolecules, such as collagen type IV, laminin, fibronectin, heparan-sulphate proteoglycans and some other less well characterised glycoproteins (1, 2, 3). The large vessel walls such as the aorta contain several differentiated cell types such as the endothelial cells, smooth muscle cells, fibroblasts and probably also migrating cells such as monocytes-macrophages. Such vessels contain also large amounts of intercellular matrix macromolecules and the cell/matrix ratio is often much in favor of the intercellular matrix. Several laboratories invested a great effort in the isolation and characterisation of the intercellular matrix components of vascular wall. It is beyond the scope of this presentation to review this rapidly growing field. Instead we shall describe shortly some of those experiments which enlighten the intricate interrelationship between cells and the intercellular matrix elements of the vascular wall.


Elastic Fiber Rabbit Aorta Brain Microvessels Intercellular Matrix Matrix Macromolecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Robert AM, Boniface R, Robert L (1979) Biochemistry and Pathology of Basement Membranes. Role in Diabetes. “Frontiers of Matrix Biology” S. Karger, Basel.Google Scholar
  2. 2.
    Kefalides NA (1973) Structure and biosynthesis of basement membranes. In: Hall DA and Jackson DS (eds) Intern. Rev. Connective Tissue Res., Vol. 6, Academic Press, NY/London, p. 63–104Google Scholar
  3. 3.
    Moczar M, Phan-Dinh-Tuy B, Robert L (1982) Structural glycoproteins from rabbit aortic media. Biochem J, submitted.Google Scholar
  4. 4.
    Labat-Robert J (1981) Structural glycoproteins of connective tissue. In: Deyl, Adam (eds) Connective Tissue Research: Chemistry, Biology and Physiology, Alan R. Liss, Inc., NY, p. 233–246Google Scholar
  5. 5.
    Garrone R (1981) The evolution of connective tissue. Phylogenetic distribution and moficiations during development. In: Connective Tissue Research: Chemistry, Biology and Physiology, Alan R. Liss, Inc., NY, p. 141–149.Google Scholar
  6. 6.
    Robert B, Robert L (1973) Aging of connective tissues. General considerations. In: Robert L. (ed) Aging of Connective Tissues- Skin “Frontiers of Matrix Biology” Vol. 1, S. Karger, Basel, p. 1–45.Google Scholar
  7. 7.
    Moczar M, Robert L (1976) Action of human hyperlipemic sera on the biosynthesis of intercellular matrix macromolecules in aorta organ cultures. Paroi Artérielle 3: 105–113.PubMedGoogle Scholar
  8. 8.
    Jacob MP, Bréchemier D, Robert L, Hornebeck W (1982) Variation of elastase-type protease activity and elastin biosynthesis in rabbit aorta induced by cholesterol diet and immunization with elastin peptides. Artery, in print.Google Scholar
  9. 9.
    Robert AM, Grosgogeat Y, Reverdy V, Robert B, Robert L (1971) Lésions artérielles produites chez le lapin par immunisation avec l’élastine et les glycoprotéines de structure de l’aorte,. Etudes biochimiques et morphologiques. Atherosclerosis 13: 427–449.PubMedCrossRefGoogle Scholar
  10. 10.
    Robert B, Derouette JC, Robert L (1974) Mise en évidence d’une protéase à activité élastolytique dans les extraits d’aortes humaines et animales. C.R. Acad. Sci. Paris 278: 3251–3254.Google Scholar
  11. 11.
    Hornebeck W, Derouette JC, Robert L (1975) Isolation, purification and properties of aortic elastase. FEBS Letters 58: 66–70.PubMedCrossRefGoogle Scholar
  12. 12.
    Bréchemier D, Hornebeck W, Bourdillon MC, Blaes N, Crouzet B, Robert L (1980) Elastase-like proteases in rat aorta smooth muscle cells and fibroblasts. Artery 8: 342–347.PubMedGoogle Scholar
  13. 13.
    Bréchemier D, Robert L, Hornebeck W (1982) Isolation and characterisation of an elastase-type protease from rat aorta smooth muscle cells. Biochem J, submitted.Google Scholar
  14. 14.
    Godeau G, Lafuma Ch, Hornebeck W, Robert L (1982) Morphological and biochemical alterations of arterial and lung elastic tissue induced by immunisation with K-elastin peptides, in preparation.Google Scholar
  15. 15.
    Godeau G, Frances C, Hornebeck W, Bréchemier D, Robert L (1982) Isolation and partial characterization of an elastase-type protease in human vulva fibroblasts: its possible involvment in vulvar elastic tissue destruction of patients with lichen sclerosus et atrophicus, J Invest. Dermatol. 78: 270–275.PubMedCrossRefGoogle Scholar
  16. 16.
    Jacob MP, Bellon G, Robert L, Hornebeck W, Ayrault-Jarrier M, Burdin J., Polonovski J (1981) Elastase-type activity associated with high density lipoproteins in human serum. Biochem Biophys Res Comm 103: 311–318.PubMedCrossRefGoogle Scholar
  17. 17.
    McCullagh KG, Ehrhart LA (1974) Increased arterial collagen synthesis in experimental canine atherosclerosis, Atherosclerosis 19: 13–28.PubMedCrossRefGoogle Scholar
  18. 18.
    Ehrhart LA, Holderbaum D (1977) Stimulation of aortic protein synthesis in experimental rabbit atherosclerosis. Atherosclerosis 27: 477–485.PubMedCrossRefGoogle Scholar
  19. 19.
    McCullagh KG, Duance VC, Bishop KA (1980) The distribution of collagen types I, III and V (AB) in normal and atherosclerotic human aorta. J. Pathol 130: 45–55.PubMedCrossRefGoogle Scholar
  20. 20.
    Junqueira LC, Bignolas G, Brentani R (1979) Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 11: 447–455.PubMedCrossRefGoogle Scholar
  21. 21.
    Labat-Robert J, Szendroi M, Grimaud A, Godeau G, Robert L (1982) Codistribution of collagen type III and fibronectin in fresh human arterial lesion, in preparation.Google Scholar
  22. 22.
    Hynes RO, Destree AT, Perkins ME, Wagner DD (1979) Cell surface fibronectin and oncogenic transformation. J Supramol Structure 11: 95–104.CrossRefGoogle Scholar
  23. 23.
    Vaheri A, Alitalo K, Hedman K, Kurkinen M, Saksela O, Vartio T (1980) Fibronectin and its loss in malignant transformation. In: Robert AM, Robert L (eds) Biochimie des Tissus Conjonctifs Normaux et Pathologiques, Vol. 2, Colloque CNRS, Paris N° 287 p. 249–254.Google Scholar
  24. 24.
    Labat-Robert J, Birembaut P, Robert L, Adnet JJ (1981) Modification of fibronectin distribution pattern in solid human tumors. Diagnostic Histopathology 4: 299–236.PubMedGoogle Scholar
  25. 25.
    Robert AM, Godeau G, Moati F, Miskulin M (1977) Action of antho- cyanosides of Vaccinium myrtillis on the permeability of the blood brain barrier. J Med 8: 321–332PubMedGoogle Scholar
  26. 26.
    Kadar A, Robert L, Miskulin M, Tixier JM, Bréchemier D, Robert AM (1979) Influence of anthocyanoside treatment on the cholesterol induced atherosclerosis in the rabbit. Paroi Artérielle 5: 187–206.PubMedGoogle Scholar
  27. 27.
    Harsing J, Tixier JM, Kemeny A, Robert AM (1982) Effect of procyanidolic oligomers on the permeability of the blood-brain barrier. Arterial Wall, in print.Google Scholar
  28. 28.
    Robert L, Bréchemier D, Godeau G, Labat ML, Milhaud G (1977) Prevention of experimental mmunarteriosclerosis by calcitonin. Biochem Pharmacol 26: 2129–2135.PubMedCrossRefGoogle Scholar
  29. 29.
    Robert AM, Miskulin M, Godeau G, Tixier JM, Milhaud G (1982) Action of calcitonin on the atherosclerotic modifications of brain microvessels induced in rabbits by cholesterol feeding. Exper Mol Pathol 37: in print.Google Scholar
  30. 30.
    Moczar M, Migne J, Bruel J, Dimitrieff H, Wegrowski J, Robert L (1981) Effect of alpha-blocking agent, nicergoline and a beta blocking agent, acebutolol on the in vitro biosynthesis of the macromolecules of the intercellular matrix rabbit aortic media. Paroi Artérielle 7: 44Google Scholar
  31. 31.
    Berg RA, Moss J, Baum BJ, Crystal RG (1981) Regulation of collagen production by the β-adrenergic system. J Clin Invest 67: 1457–1462.PubMedCrossRefGoogle Scholar
  32. 32.
    Wegrowski J, Harsing J, Godeau G, Robert AM, Moczar M (1982) Effect of colchicin on the cholesterol induced atherosclerosis of the rabbit. Arterial Wall, in print.Google Scholar
  33. 33.
    Clopath P, Sinzinger H (1980) Calcitonin increases porcine vascular prostacyclin formation. Prostaglandins 19: 1PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • L. Robert
  • W. Hornebeck
  • A. M. Robert

There are no affiliations available

Personalised recommendations