Derivation and Progression of Atherosclerotic Plaques

  • M. D. Haust
Conference paper


The incidence of clinical disease and mortality from atherosclerosis increased alarmingly in advanced industrialized societies following World War II. Some elements of modern life appeared to aggravate and accelerate this disease with the coronary circulation being particularly affected. In the mid-sixties atherosclerotic heart disease assumed almost epidemic proportions and over half of all deaths in the United States of America were in some way associated with atherosclerosis (1). In several European countries with traditionally low mortality rates from coronary heart disease the involvement with atherosclerosis gradually approached that in the U.S.A. (2).


Atherosclerotic Plaque Mural Thrombus Type Versus Collagen Lamina Densa Fibrous Plaque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atherosclerosis. A Report by the National Heart and Lung Institute Task Force on Arteriosclerosis, Vol II (1971) DHEW Publication No (NIH), US Government Printing Office, Washington, DCGoogle Scholar
  2. 2.
    Rose G (1970) Current developments in Europe. In: Jones RJ (ed) Atherosclerosis, Proceedings of the Second International Symposium, Springer-Verlag, New York-Heidelberg-Berlin, p 310Google Scholar
  3. 3.
    Gordon T, Thorn T (1975) The recent decrease in CHD mortality. Prev Med 4: 115–125PubMedCrossRefGoogle Scholar
  4. 4.
    McMillan GC (1979) Atherosclerotic disease and the vessel wall. Exp Mol Pathol 31: 163–168PubMedCrossRefGoogle Scholar
  5. 5.
    Walker WJ (1977) Changing United States lifestyle and declining vascular mortality: cause or coincidence? N Engl J Med 29 7: 163–165CrossRefGoogle Scholar
  6. 6.
    Fourth Report of the Director of the National Heart, Lung, and Blood Institute (1977) DHEW Publication No (NIH) 77–170, US Government Printing Office, Washington, DCGoogle Scholar
  7. 7.
    Benditt EP, Gown AM (1980) Atheroma: the artery wall and the environment. Int Rev Exp Pathol 21: 55–118PubMedGoogle Scholar
  8. 8.
    French JE (1966) Atherosclerosis in relation to the structure and function of the arterial intima, with special reference to the endothelium. Int Rev Exp Pathol 5: 253–353PubMedGoogle Scholar
  9. 9.
    Geer JC, McGill HC Jr, Strong JP (1961) The fine structure of human atherosclerotic lesions. Am J Pathol 38: 263–287PubMedGoogle Scholar
  10. 10.
    Ghidoni JJ, O’Neil RM (1967) Recent advances in molecular pathology: a review. Ultrastructure of human atheroma. Exp Mol Pathol 7: 378–400PubMedCrossRefGoogle Scholar
  11. 11.
    Haust MD, More RH, Movat HZ (1959) The mechanism of fibrosis in arteriosclerosis. Am J Pathol 35: 265–273PubMedGoogle Scholar
  12. 12.
    Haust MD (1978) Light and electron microscopy of human atherosclerotic lesions. Adv Exp Med Biol 104: 33–59PubMedGoogle Scholar
  13. 13.
    Haust MD (1978) Zur Morphologie der Arteriosklerose. Internist (Berlin) 19: 621–626Google Scholar
  14. 14.
    Haust MD (1981) The natural history of atherosclerotic lesions. In: Moore S (ed) Vascular Injury and Atherosclerosis, Marcel Dekker Inc, New York, p 1Google Scholar
  15. 15.
    Haust MD (1982) Atherosclerosis; - lesions and sequelae. In: Silver MD (ed) Cardiovascular Pathology, Churchill-Livingstone, New York, In PressGoogle Scholar
  16. 16.
    Marshall JR, Adams JG, O’Neal RM, DeBakey ME (1966) The ultrastructure of uncomplicated human atheroma in surgically resected aortas. J Atheroscler Res 6: 120–131PubMedCrossRefGoogle Scholar
  17. 17.
    Haust MD (1971) The morphogenesis and fate of potential and early atherosclerotic lesions in man. Human Pathol 2: 1–29CrossRefGoogle Scholar
  18. 18.
    Haust MD (1978) Atherosclerosis in childhood. In: Rosenberg HS, Bolande RP (eds) Perspectives in Pediatric Pathology, Vol 4, Year Book Medical Publishers Inc, Chicago, Illinois, p 155Google Scholar
  19. 19.
    Geer JC, Haust MD (1972) Smooth Muscle Cells in Atherosclerosis. In: Pollak OJ, Simms HS, Kirk JE (eds) Monographs on Atherosclerosis, Vol 2, S Karger, Basel-London-New YorkGoogle Scholar
  20. 20.
    Haust MD, More RH (1958) New functional aspects of smooth muscle cells. Fed Proc 17: 440Google Scholar
  21. 21.
    Haust MD, More RH (1963) Significance of the smooth muscle cell in atherogenesis. In: Jones RJ (ed) Evolution of the Atherosclerotic Plaque, University of Chicago Press, Chicago, p 51Google Scholar
  22. 22.
    Haust MD, More RH, Movat HZ (1960) The role of smooth muscle cells in the fibrogenesis of arteriosclerosis. Am J Pathol 37: 377–389PubMedGoogle Scholar
  23. 23.
    Haust MD (1982) Atherosclerosis and smooth muscle cells. In: Stephens NL (ed) Biochemistry of Smooth Muscle, CRC Press Inc Number 6575, Boca Raton, Florida, In PressGoogle Scholar
  24. 24.
    Haust MD, More RH (1960) The thrombotic basis of arteriosclerosis. Heart Bull 9: 90–92PubMedGoogle Scholar
  25. 25.
    Haust MD (1977) Thrombosis in the inception and progression of coronary atherosclerotic lesions. In: Schettler G, Horsch A, Mörl H, Orth H, Weizel A (eds) Der Herzinfarkt, FK Schattauer Verlag, Stuttgart-New York, p 120Google Scholar
  26. 26.
    More RH, Movat HZ, Haust MD (1957) Role of mural fibrin thrombi of the aorta in genesis of arteriosclerotic plaque. AMA Arch Pathol 63: 612–620PubMedGoogle Scholar
  27. 27.
    Haust MD (1965) Fine fibrils of extracellular space (microfibrils). Their structure and role in connective tissue organization. Am J Pathol 47: 1113–1137PubMedGoogle Scholar
  28. 28.
    Haust MD, More RH (1966) Mechanism of fibrosis in white atherosclerotic plaque of human aorta: an electron microscopic study. Circulation 34 (III): 14Google Scholar
  29. 29.
    Kefalides NA (1973) Structure and biosynthesis of basement membranes. Int Rev Conn Tiss Res 6: 63–104Google Scholar
  30. 30.
    Kefalides NA, Alper R, Clark CC (1979) Biochemistry and metabolism of basement membranes. Int Rev Cytol 61: 16 7–228Google Scholar
  31. 31.
    Foidart JM, Bere EW Jr, Yaar M, Rennard SI, Gullino M, Martin GR, Katz SI (1980) Distribution and immunoelectron microscopic localization of laminin, a noncollagenous basement membrane glycoprotein. Lab Invest 42: 336–342PubMedGoogle Scholar
  32. 32.
    Rohde H, Wick G, Timpl R (1979) Immunochemical characterization of the basement membrane glycoprotein laminin. Eur J Biochem 102: 195–201PubMedCrossRefGoogle Scholar
  33. 33.
    Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR (1979) Laminin--a glycoprotein from basement membranes. J Biol Chem 254: 9933–9937PubMedGoogle Scholar
  34. 34.
    Voss B, Rauterberg J, Jander R, Timpl R (1982) Localization of different collagen types, fibronectin and laminin in blood vessel walls. Abstract (Poster Session P18) No 649, Program, 6th International Symposium on Atherosclerosis, Berlin, June 13–17, p 36Google Scholar
  35. 35.
    Gay S (1982) Immunology of collagens. In: Wagner BM, Fleischmajer R (eds) Connective Tissue and Diseases of Connective Tissue, Williams & Wilkins Co, Baltimore, In PressGoogle Scholar
  36. 36.
    Hahn E, Wick G, Pencev D, Timpl R (1980) Distribution of basement membrane proteins in normal and fibrotic human liver; collagen type IV, laminin, and fibronectin. Gut 21:63–71PubMedCrossRefGoogle Scholar
  37. 37.
    Miller EJ, Gay S (1982) The multiple types and forms of collagen - an overview. In: Cunningham LW, Fredrickson DW (eds) Methods in Enzymology, Academic Press, New YorkGoogle Scholar
  38. 38.
    Thesleff I, Barrach HJ, Foidart JM, Vaheri A, Pratt RM, Martin GR (1981) Changes in the distribution of type IV collagen, laminin, proteoglycan, and fibronectin during mouse tooth development. Develop Biol 81: 182–192PubMedCrossRefGoogle Scholar
  39. 39.
    Martin GR, Robey PG, Hassell JR, Liotta LA (1982) Structure and function of basement membranes. In: Wagner BM, Fleischmajer R (eds) Connective Tissue and Diseases of Connective Tissue, Williams & Wilkins Co, Baltimore, In PressGoogle Scholar
  40. 40.
    Kjellen L, Oldberg A, Höök M (1980) Cell-surface heparan sulfate. Mechanisms of proteoglycan-cell association. J Biol Chem 255: 10407–10413PubMedGoogle Scholar
  41. 41.
    Jellinek H, Harsing J, Füzesi Sz (1982) A new model for arteriosclerosis. An electron-microscopic study of the lesions induced by i.v. administered fat. Atherosclerosis 43: 7–18PubMedCrossRefGoogle Scholar
  42. 42.
    Leushner JRA, Haust MD (1982) The isolation and characterization of type V collagen from bovine aortae. Abstract (Poster Session P12) No 439, Program, 6th International Symposium on Atherosclerosis, Berlin, June 13–17, p 32Google Scholar
  43. 43.
    Nikkari T, Heikkinen E (1968) The lipids of collagen preparations. Acta Chem Scand 22: 3047–3052PubMedCrossRefGoogle Scholar
  44. 44.
    McCullagh KG, Ehrhart LA (1974) Increased arterial collagen synthesis in experimental canine atherosclerosis. Atherosclerosis 19: 13–28PubMedCrossRefGoogle Scholar
  45. 45.
    Hollander W, Colombo MA, Kramsch DM, Kirkpatrick B (1974) Immunological aspects of atherosclerosis. Adv Cardiol 13: 192–207PubMedGoogle Scholar
  46. 46.
    McCullagh KA Balian G (1975) Collagen characterization and cell transformation in human atherosclerosis. Nature 258: 73–75PubMedCrossRefGoogle Scholar
  47. 47.
    Morton LF, Barnes MJ (1982) Collagen polymorphism in the normal and diseased blood vessel wall. Investigation of collagens types I, III and V. Atherosclerosis 42: 41–51PubMedCrossRefGoogle Scholar
  48. 48.
    Balis JU, Haust MD, More RH (1964) Electron-microscopic studies in human atherosclerosis. Cellular elements in aortic fatty streaks. Exp Mol Pathol 3: 511–525CrossRefGoogle Scholar
  49. 49.
    Mustard JF (1975) Function of blood platelets and their role in thrombosis. Trans Am Clin Climatol Ass 87: 104–127Google Scholar
  50. 50.
    Chesney C Mcl, Harper E, Colman RW (1974) Human platelet collagen- ase. J Clin Invest 53: 1647–1654PubMedCrossRefGoogle Scholar
  51. 51.
    Haust MD (1970) Injury and repair in the pathogenesis of atherosclerotic lesions. In: Jones RJ (ed) Atherosclerosis, Proceedings of the Second International Symposium, Springer-Verlag, New York- Heidelberg-Berlin, p 12Google Scholar
  52. 52.
    Haust MD, More RH (1972) Development of modern theories on the pathogenesis of atherosclerosis. In: Wissler RW, Geer JC (eds) The Pathogenesis of Atherosclerosis, Williams & Wilkins Co, Baltimore, P 1Google Scholar
  53. 53.
    Haust MD (1974) Reaction patterns of intimal mesenchyme to injury, and repair in atherosclerosis. Adv Exp Med Biol 43: 35–57PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • M. D. Haust
    • 1
  1. 1.Department of PathologyThe University of Western OntarioLondonCanada

Personalised recommendations