Advertisement

Migration and/or Birth-Death Processes in Populations

  • Wolfgang Weidlich
  • Günter Haag
Part of the Springer Series in Synergetics book series (SSSYN, volume 14)

Abstract

In this chapter a model of migration and birth-death processes for interacting populations will be developed which may be considered as a typical application of the general concepts of Chap. 3.

Keywords

Singular Point Master Equation Open Habitat Detailed Balance Graphical Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 4.1
    R. M. May: Stability and Complexity in Model Ecosystems ( University Press, Princeton 1973 )Google Scholar
  2. 4.2
    R. Rosen: Dynamical System Theory in Biology, Vol. 1 ( Wiley-Interscience, New York 1970 )MATHGoogle Scholar
  3. 4.3
    E. C. Pielou: An Introduction to Mathematical Ecology ( Wiley-Interscience, New York 1969 )MATHGoogle Scholar
  4. 4.4
    D. Ludwig: Stochastic Population Theories, Lecture Notes Biomath., Vol. 3 ( Springer, Berlin, Heidelberg, New York 1974 )Google Scholar
  5. 4.5
    N. S. Goel, N. Richter-Dyn: Stochastic Models in Biology ( Academic, New York 1974 )Google Scholar
  6. 4.6
    N. S. Goel, S. C. Maitra, E. W. Montroll: On the Volterra and other nonlinear models of interacting populations. Rev. Mod. Phys. 43, 231 (1971)CrossRefADSMathSciNetGoogle Scholar
  7. 4.7
    E. Renshaw: Birth, death and migration processes. Biometrica 59, 49 (1972)CrossRefMATHMathSciNetGoogle Scholar
  8. 4.8
    W. M. Getz: Stochastic Equivalents of the linear and Volterra-Lotka systems of equations — a general birth-and death-process formulation. Math. Biosci. 29, 235 (1976)CrossRefMATHMathSciNetGoogle Scholar
  9. 4.9
    J. Jorne, S. Carmi: Liapunov stability of the diffusive Lotka-Volterra equations. Math. Biosci. 37, 51 (1977)CrossRefMATHMathSciNetGoogle Scholar
  10. 4.10
    W. Weidlich, G. Haag: Migration behaviour of mixed population in a Town. Collect. Phenom. 3, 89 (1980)MathSciNetGoogle Scholar
  11. 4.11
    W. Weidlich, G. Haag: „Dynamics of Interacting Groups with Application to the Migration of Population”, in Lectures and Tutorials, Vol. 11 ( Oldenburg, Munich 1980 )Google Scholar
  12. 4.12
    H. Haken: Synergetics, An Introduction, 2nd ed., Springer Ser. Synergetics, Vol. 1 ( Springer, Berlin, Heidelberg, New York 1977 )Google Scholar
  13. 4.13
    W. Weidlich: On the structure of exact solutions of discrete master equations. Z. Phys. B 30, 345 (1978)CrossRefADSGoogle Scholar
  14. 4.14
    G. Kirchhoff: Über die Auflösung der Gleichungen auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Poggendorffs Ann. Phys. 72, 495 (1844)Google Scholar
  15. 4.15
    D. L. De Angelis: Application of stochastic models to a wildlife population. Math. Biosci. 31, 227 (1976)CrossRefMATHGoogle Scholar
  16. 4.16
    E. O. Wilson, W. H. Bossert: A Primer of Population Biology (Stamford, CT 1971 )Google Scholar
  17. 4.17
    H. C. Hanson: The Giant Canada Goose, see [4.15]Google Scholar
  18. 4.18
    G. Haag, P. Hänggi: Exact solution of discrete master equations in terms of continued fractions. Z. Phys. B 34, 411 (1979)CrossRefADSMathSciNetGoogle Scholar
  19. 4.19
    G. Haag, P. Hänggi: Continued fraction solutions of discrete master equations not obeying detailed balance II. Z. Phys. B39, 269 (1980)CrossRefMathSciNetGoogle Scholar
  20. 4.20
    W. G. Doubleday: On linear birth-death processes with multiple birth. Math. Biosci. 17, 43 (1973)CrossRefMATHMathSciNetGoogle Scholar
  21. 4.21
    A. J. Lotka: Analytical note on certain rhythmic relations in organic systems. Proc. Nat. Acad. Sci. U.S.A. 6, 410 (1920)CrossRefADSGoogle Scholar
  22. 4.22
    V. Volterra: Variations and Fluctuations of the Numbers of Individuals in Coexisting Animal Populations (in italian), Mem. R. Comitato talassogr. ital., mem., 131 (1927), reprinted in Opere Math. 5, Rome (1962)Google Scholar
  23. 4.23
    R. Arditi, J. M. A. Billon, J. V. Da Silva: The effect of a time-delay in a predator-prey model. Math. Biosc. 33, 107 (1977)CrossRefMATHGoogle Scholar
  24. 4.24
    J. Gomatam, N. Mac Donald: Time delays and stability of two competing species. Math. Biosci. 24, 247 (1975)CrossRefMATHGoogle Scholar
  25. 4.25
    N. Mac Donald: Time delay in prey-predator models. Math. Biosci. 28, 321 (1976)CrossRefMathSciNetGoogle Scholar
  26. 4.26
    M. Gatto, S. Rinaldi: Stability analysis of predator-prey models via the Liapunov method. Bull. Math. Biol. 39, 339 (1977)MATHMathSciNetGoogle Scholar
  27. 4.27
    G. F. Gause: Experimental demonstration of Volterra’s periodic oscillations in numbers of animals. J. Exp. Biol. 12, 44 (1934)Google Scholar
  28. 4.28
    C. B. Huffaker: Experimental studies on predation: Dispersion factors and predator-prey oscillations. Hilgardia 27, 343 (1958)Google Scholar
  29. 4.29
    S. Utida: On the equilibrium state of the interacting population of an insect and its parasite. Ecology 31, 165 (1950)CrossRefGoogle Scholar
  30. 4.30
    H. Yoon, H. W. Blanch: The stability of predator-prey interactions in microbial ecosystems. Math. Biosci. 33, 85 (1977)CrossRefMathSciNetGoogle Scholar
  31. 4.31
    W. C. Chewning: Migratory effects in predator-prey models. Math. Biosci. 23, 253 (1975)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Wolfgang Weidlich
    • 1
  • Günter Haag
    • 1
  1. 1.Institut für Theoretische PhysikUniversität StuttgartStuttgart 80Fed. Rep. of Germany

Personalised recommendations