Introduction and Outline

  • Wolfgang Weidlich
  • Günter Haag
Part of the Springer Series in Synergetics book series (SSSYN, volume 14)


We are going to develop a framework for the quantitative description of the dynamics of a wide class of sociological phenomena. The concepts of the theory used belong to the field of synergetics, a new interdisciplinary branch of science.


Langevin Equation Random Force Fluctuate Force Bifurcation Process Probability Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.1
    H. Haken: Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems. Rev. Mod. Phys. 47, 67 (1975)CrossRefADSMathSciNetGoogle Scholar
  2. 1.2
    H. Haken (ed.): Cooperative Effects, Progress in Synergetics, ( North-Holland, Amsterdam 1974 )Google Scholar
  3. 1.3
    H. Haken: Synergetics, an Introduction, 2nd ed., Springer Ser. Synergetics, Vol. 1 ( Springer, Berlin, Heidelberg, New York 1977 )Google Scholar
  4. 1.4
    H. Haken (ed.): Synergetics, a Workshop, Springer Ser. Synergetics, Vol. 2 ( Springer, Berlin, Heidelberg, New York 1977 )Google Scholar
  5. 1.5
    A. Pacault, C. Vidal (eds.): Synergetics far from Equilibrium, Springer Ser. Synergetics, Vol. 3 ( Springer, Berlin, Heidelberg, New York 1978 )Google Scholar
  6. 1.6
    W. Göttinger, H. Eikemeier (eds.): Structural Stability in Physics, Springer Ser. Synergetics, Vol. 4 ( Springer, Berlin, Heidelberg, New York 1978 )Google Scholar
  7. 1.7
    H. Haken (ed.): Pattern Formation by Dynamic Systems and Pattern Recognition, Springer Ser. Synergetics, Vol. 5 ( Springer, Berlin, Heidelberg, New York 1979 )Google Scholar
  8. 1.8
    H. Haken (ed.): Dynamics of Synergetic Systems, Springer Ser. Synergetics, Vol. 6 ( Springer, Berlin, Heidelberg, New York 1980 )Google Scholar
  9. 1.9
    G. Nicolis, I. Prigogine: Selforganisation in Non-Equilibrium System ( Wiley, New York 1977 )Google Scholar
  10. 1.10
    H. Haken: Generalized Ginzburg-Landau equations for phase transition-like phenomena in lasers, nonlinear optics, hydrodynamics and chemical reactions. Z. Phys. B21, 105 (1975)Google Scholar
  11. 1.11
    R. Bonifacio (ed.): Dissipative Systems in Quantum Optics, Topics Current Phys., Vol. 27 ( Springer, Berlin, Heidelberg, New York 1982 )Google Scholar
  12. 1.12
    H. Haken: Laser Theory, Encyclopedia of Physics, Vol. XXV/2 (Springer, Berlin, Heidelberg, New York 1970 )Google Scholar
  13. 1.13
    F. Schlögl: Chemical reaction models for non-equilibrium phase transitions. Z. Phys. 253, 147 (1972)CrossRefADSGoogle Scholar
  14. 1.14
    H. K. Janssen: Stochastic reaction model for a non-equilibium phase transition. Z. Phys. 270, 67 (1974)CrossRefADSGoogle Scholar
  15. 1.15
    S. Chaturvedi, C. W. Gardiner, I. S. Matheson, D. F. Walls: Stochastic analysis of a chemical reaction with spatial and temporal structures. J. Stat. Phys. 17, 469 (1977)CrossRefADSMathSciNetGoogle Scholar
  16. 1.16
    Y. Kuramoto: Diffusion Induced Chemical Turbulence, in [Ref. 1.8, p. 134] and Progr. Theor. Phys. Suppl. 64, 346 (1978)Google Scholar
  17. 1.17
    A. Nitzan: „The Critical Behavior of Non-Equilibrium Transitions in Reacting Diffusion Systems”, in [Ref. 1.8, p. 119]Google Scholar
  18. 1.18
    M. Eigen, P. Schuster: The hypercycle, a principle of natural self-organization, Naturwissenschaften 64, 541 (1977), 65, 7 (1978), 65, 341 (1978)CrossRefADSGoogle Scholar
  19. 1.19
    H. Kuhn: “Persistence of Organized Structures and Breakthrough of New Structures”, in [Ref. 1.4, p. 200]Google Scholar
  20. 1.20
    A. Babloyantz, L. K. Kaczmarek: Selforganization in multiply connected systems. Bull. Math. Biol. 41, 193 (1979)MATHMathSciNetGoogle Scholar
  21. 1.21
    J. S. Nicolis, E. N. Protonotarios: Bifurcation in non-negotiable games, a paradigm for self-organization in cognitive systems. Int. J. Bio-med. Comput. 10, 417 (1979)CrossRefGoogle Scholar
  22. 1.22
    J. S. Nicolis, M. Benrubi: Inadequate Communication Between Selforganizing Systems and Desynchronization of Physiological Rhythms, a Psychophysiological Study, General Systems, XXII, 119 (1977)Google Scholar
  23. 1.23
    A. Gierer, H. Meinhardt: Adaptation and application of a theory of biological pattern formation. J. Cell. Sci. 15, 321 (1974)Google Scholar
  24. 1.24
    S. K. Ma: Modern Theory of Critical Phenomena, (Benjamin, New York 1976 )Google Scholar
  25. 1.25
    C. Prins (ed.): Van der Waals Centennial Conference on Statistical Mechanics, ( North-Holland, Amsterdam 1974 )Google Scholar
  26. 1.26
    H. Haken: Licht und Materie, Vol. 1-3 (B. I.-Wissenschaftsverlag, Mannheim, Wien, Zürich, 1979, 1980, 1981 )Google Scholar
  27. 1.27
    H. Paul: Lasertheorie, Vol. 53, 54 ( Akademie, Berlin WTB, 1969 )Google Scholar
  28. 1.28
    M. Sargent, M. O. Scully, W. E. Lamb, jr.: Laser Physics, ( Addison Wesley, Reading, MA 1974 )Google Scholar
  29. 1.29
    F. Haake: Treatment of Open Systems by Generalized Master Equations, Springer Tracts Mod. Phys., Vol. 66 ( Springer, Berlin, Heidelberg, New York 1973 )Google Scholar
  30. 1.30
    H. Grabert: Projection Operator Techniques in Nonequilibrium Statistical Mechanics, Springer Tracts Mod. Phys., Vol. 95 ( Springer, Berlin, Heidelberg, New York 1982 )Google Scholar
  31. 1.31
    R. Landauer: The Role of Fluctuations in Multistable Systems and in the Transition to Multi-stability, in Bifurcation Theory and Applications in Scientific Disciplines, ed. by O. Gurel, O. E. Rössler ( N. Y. Acad. Sci., New York 1979 ) p. 433Google Scholar
  32. 1.32
    D. A. McQuarrie: Stochastic approach to chemical kinetics. J. Appl. Prob. 4, 413 (1967)CrossRefMATHMathSciNetGoogle Scholar
  33. 1.33
    R. Kubo, K. Matsuo, K. Kitahara: Fluctuation and relaxation of macrovariables. J. Stat. Phys. 9, 51 (1973)CrossRefADSGoogle Scholar
  34. 1.34
    J. T. Hynes, R. Kapral, M. Weinberg: Microscopic theory of Brownian motion: Nonlinear Langevin equations. Physica 81 A, 485 (1975)Google Scholar
  35. 1.35
    V. Daniel: Physical Principles in Human Cooperation, The Sociological Rev. 44, 107 (1952)CrossRefGoogle Scholar
  36. 1.36
    W. Weidlich: The statistical description of polarization phenomena in society. Br. J. Math. Stat. Psychol. 24, 251 (1971)CrossRefMATHGoogle Scholar
  37. 1.37
    W. Weidlich: The use of statistical models in sociology. Collect. Phenom. 1, 51 (1972)Google Scholar
  38. 1.38
    W: Weidlich: Dynamics of Interacting Social Groups”, in [Ref. 1.2, p. 269]Google Scholar
  39. 1.39
    E. Callen, M. Scully, D. Shapero: J. Math. Psychol. (1975)Google Scholar
  40. 1.40
    D. F. Walls: Non-equilibrium phase transition in sociology. Collect. Phenom. 2, 125 (1976)MathSciNetGoogle Scholar
  41. 1.41
    W. Weidlich, G. Haag: Dynamics of Interacting Groups in Society with Application to the Migration of Population”, in [Ref. 1.8, p. 235]Google Scholar
  42. 1.42
    W. Weidlich, G. Haag: Migration behavior of mixed population in a town. Collect. Phenom. 3, 89 (1980)MathSciNetGoogle Scholar
  43. 1.43
    J. S. Coleman: Introduction to Mathematical Sociology, ( The Free Press, New York 1964 )Google Scholar
  44. 1.44
    D. J. Bartholomew: Stochastic Models for Social Processes ( Wiley, London 1967 )Google Scholar
  45. 1.45
    E. W. Montroll, W. W. Badger: Introduction to Quantitative Aspècts of Social Phenomena ( Gordon and Breach, New York 1974 )Google Scholar
  46. 1.46
    A. Nitschke: Revolutionen in Naturwissenschaft und Gesellschaft, Problemata 83, Stuttgart-Bad Cannstatt (1979)Google Scholar
  47. 1.47
    A. Nitschke: “Systems and Changes of Systems in History, in [Ref. 1.7, p. 234]Google Scholar
  48. 1.48
    T. Poston, I. N. Stewart, Catastrophe Theory and Its Applications ( Pitman, London 1978 )MATHGoogle Scholar
  49. 1.49
    R. Abraham, C. Shaw: Dynamics, The Geometry of Behaviour Vol. 0-3 ( Aerial Press, Santa Cruz 1982 )Google Scholar
  50. 1.50
    M. W. Hirsch, S. Smale: Differential Equations, Dynamical Systems and Linear Algebra ( Academic, New York 1974 )Google Scholar
  51. 1.51
    R. L. Stratonovich: Topics in the Theory of Random Noise, Vols. 1 and 2 (Gordon and Breach, New York 1963 and 1967 )Google Scholar
  52. 1.52
    A. T. Bharucha-Reid: Elements of the Theory of Markov Processes and Their Applications ( Mc-Graw Hill, New York 1960 )MATHGoogle Scholar
  53. 1.53
    N. Wax (ed.): Selected Papers on Noise and Stochastic Processes ( Dover, New York 1954 )MATHGoogle Scholar
  54. 1.54
    D. H. Sattinger: Topics in Stability and Bifurcation Theory”, Lecture Notes Math., Vol. 309 ( Springer, Berlin, Heidelberg, New York 1973 )Google Scholar
  55. 1.55
    J. E. Marsden, M. Mc Cracken: The Hopf Bifurcation and Its Applications, Appl. Math. Sc. Vol. 19 ( Springer, New York 1976 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Wolfgang Weidlich
    • 1
  • Günter Haag
    • 1
  1. 1.Institut für Theoretische PhysikUniversität StuttgartStuttgart 80Fed. Rep. of Germany

Personalised recommendations