Skip to main content

Chemical Kinetics and Differentiable Dynamical Systems

  • Conference paper
Nonlinear Phenomena in Chemical Dynamics

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 12))

Abstract

According to traditional physical views, the frequencies present in the time evolution of a system correspond to the excitation of various modes or degrees of freedom of the system. Following these views, hydrodynamical turbulence is due to the excitation of a large number of modes of a fluid which, being a continuous system, has indeed an infinite number of degrees of freedom. This is the theory of Landau [9] and Hopf [8]. It has however been realized now that dynamical systems with low-dimensional phase space (dimension ≥ 3) may already have a “continuous spectrum”, i.e. a continues superposition of different frequencies. Systems with a small number of degrees of freedom may thus exhibit a “turbulent” time behavior. It is now understood that fluid systems at the onset of turbulence exhibit a great wealth of phenomena involving only a small number of degrees of freedom *). Homogeneous chemical systems have a priori only a finite number of degrees of freedom at their disposal. In view of what has just been said, they might in principle show the same variety of behavior as weakly turbulent fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. G. Ahlers. Low-temperature studies of the Rayleigh-Bénard instability and turbulence. Phys. Rev. Lett. 33, 1185–1188 (1974).

    Article  ADS  Google Scholar 

  2. J.H. Curry and J.A. Yorke. A transition from Hopf bifurcation to chaos: computer-experiments with maps on R2, in The Structure of Attractors in Dynamical Systems, ed. by N.G. Markley, J.C. Martin, W. Perrizo, Lecture Notes in Mathematics, Vol. 668 (Springer, Berlin, Heidelberg, New York 1978)

    Google Scholar 

  3. J.-P. Eckmann. Roads to turbulence in dissipative dynamical systems. Rev. moa. Phys. to appear.

    Google Scholar 

  4. M. Feigenbaum. Quantitative universality for a class of nonlinear transformations. J. Statist. Phys. 19, 25–52 (1978).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. M. Feigenbaum. The universal metric properties of of nonlinear transformations. J. Statist. Phys. 21, 669–706 (1979).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. M. Feigenbaum. The transition to periodic behavior in turbulent systems. Commun. math. Phys. 77, 65–86 (1980).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. J.P. Gollub, E.J. Romer, and J.E. Socolar. Trajectory divergence for coupled relaxation oscillators: measurements and models. J. Statist. Phys. To appear.

    Google Scholar 

  8. J.P. Gollub and H.L. Swinney. Onset of turbulence in a rotating fluid. Phys. Rev. Lett. 35, 927–930 (1975).

    Article  ADS  Google Scholar 

  9. M. Hénon. A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976).

    Article  MATH  ADS  Google Scholar 

  10. E. Hopf. Abzweigung einer periodischen Lösung von einer stationären Lösung eines Differentialsystems. Ber. Math.-Phys. K1. Sächs. Akad. Wiss. Leipzig 94, 1–22 (1942).

    Google Scholar 

  11. C.D. Landau. Turbulence. Dokl. Akad Nauk SSSR 44, 339–342 (1944).

    Google Scholar 

  12. A. Libchaber et J. Maurer. Une expérience de Rayleigh-Bénard de géométrie réduite; multiplication, accrochage et démultiplication de fréquences. J. Physique 41, Colloques C3, 51–56 (1980).

    Google Scholar 

  13. E.N. Lorenz. Deterministic nonperiodic flow. J. atmos. Sci. 20, 130–141 (1963).

    Article  ADS  Google Scholar 

  14. J.B. McLaughlin and P.C. Martin. Transition to turbulence of a statistical stressed fluid. Phys. Rev. Lett. 33, 1189–1192 (1974).

    Article  ADS  Google Scholar 

  15. J.B. McLaughlin and P.C. Martin. Transition to turbulence in a statically stressed fluid system. Phys. Rev. A 12, 186–203 (1975).

    ADS  Google Scholar 

  16. S. Newhouse, D. Ruelle, and F. Takens. Occurrence of strange axiom A attractors near quasiperiodic flows on Tm, m > 3. Commun. Math. Phys. 64, 35–40 (1978).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Y. Pomeau and P. Manneville. Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  18. K. Pye and B. Chance. Sustained sinusoidal oscillations of reduced pyridine nucleotide in a cell-free extract of Sacharomyces Carlsbergensis. Proc. Nat. Acad. Sci. 55, 888–894 (1966).

    Article  ADS  Google Scholar 

  19. O.E. Rössler. An equation for continuous chaos. Phys. Lett. 57 A, 397–398 (1976).

    ADS  Google Scholar 

  20. J.C. Roux, A. Rossi, S. Bachelard, and C. Vidal. Representation of a strange attractor from an experimental study of chemical turbulence. Phys. Lett. 77 A, 391–393 (1980).

    ADS  Google Scholar 

  21. J.C. Roux, J.S. Turner, W.D. Mc Cormick, and H.L. Swinney. Experimental observations of complex dynamics in a chemical reaction. Preprint.

    Google Scholar 

  22. D. Ruelle. Some comments on chemical oscillations. Trans. N.Y. Acad. Sci. II, 35, 66–71 (1973).

    Google Scholar 

  23. D. Ruelle. What are the measures describing turbulence ? Progr. Theoret. Phys. Suppl. 64, 339–345 (1978).

    MathSciNet  Google Scholar 

  24. D. Ruelle. Les attracteurs étranges. La Recherche 11, 132–144 (1980);

    Google Scholar 

  25. D. Ruelle. English translation: Strange attractors. Math. Inteiligencer 2, 126–137 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Ruelle and F. Takens. On the nature of turbulence. Commun. Math. Phys. 23, 343–344 (1971).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc. 73, 747–817 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  28. C. Vidal, J.C. Roux, S. Bachelard and A. Rossi. Experimental study of the transition to turbulence in the Bélousov-Zhabotinsky reaction. Ann. N.Y. Acad. Sci. 357, 377–396 (1980).

    Article  ADS  Google Scholar 

  29. C. Vidal, J.C. Roux, A. Rossi and S. Bachelard. Etude de la transition vers la turbulence chimique dans la réaction de Belousov-Zhabotinsky. C.R. Acad. Sci. Paris, Série C, 289, 73–76 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruelle, D. (1981). Chemical Kinetics and Differentiable Dynamical Systems. In: Vidal, C., Pacault, A. (eds) Nonlinear Phenomena in Chemical Dynamics. Springer Series in Synergetics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81778-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81778-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81780-9

  • Online ISBN: 978-3-642-81778-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics