Advertisement

Domain Structures in Graphite Intercalation Compounds

  • S. A. Safran
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 38)

Abstract

Domain structures have been proposed for both c-axis ordering (staging) of the intercalant layers, as well as for the in-plane superlattices that exist at low temperatures in alkali metal intercalation compounds. In this paper, the kinetics of domain growth in intercalation compounds is examined theoretically. The simultaneous growth of staged islands of intercalant is calculated for an initially homogeneous, dilute, stage-one compound. Upon quenching, the intercalant atoms cluster within a plane to form islands whose positions in different planes are correlated as a result of the interlayer interaction. The kinetics of island growth for in-plane superlattice structures are also analyzed. It is suggested that in a two-dimensional approximation, kinetically induced disorder may occur in rapidly quenched samples, leading to an amorphous or glassy structure.

Keywords

Domain Wall Intercalation Compound Domain Growth Graphite Intercalation Compound Glassy Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Daumas & A. Herold, C. R. Acad. Sci. 268, 373 (1969).Google Scholar
  2. 2.
    R. Clarke, N. Caswell, S. A. Solin, Phys. Rev. Lett. 42, 61 (1979).CrossRefADSGoogle Scholar
  3. 3.
    N. Kambe, H. Mazurek, M. S. Dresselhaus, G. Dresselhaus, Physica (to be published).Google Scholar
  4. 4.
    R. Clarke, N. Wada, S. A. Solin, Phys. Rev. Lett. 44, 1616 (1980).CrossRefADSGoogle Scholar
  5. 5.
    A. N. Berker, N. Kambe, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. Let. 45, 1452 (1980).CrossRefADSGoogle Scholar
  6. 6.
    J. Villain, in Ordering in Strongly Fluctuating Condensed Matter Systems, ed. T. Riste ( Plenum, N.Y., 1980 ). P. 91.Google Scholar
  7. 7.
    W. P. Su, J. R. Schrieffer & A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979),CrossRefADSGoogle Scholar
  8. 8.
    J. Villain in [6], p. 222.Google Scholar
  9. 9.
    S. A. Safran, Phys. Rev. Lett. 46, 1581 (1981)CrossRefADSGoogle Scholar
  10. 10.
    J. S. Langer, Annals of Physics 65, 53 (1971).CrossRefADSGoogle Scholar
  11. 11.
    M. K. Phani, J. L. Lebowitz, G. H. Kalos, O. Penrose, Phys. Rev. Lett. 45, 366 (1980).CrossRefADSGoogle Scholar
  12. 12.
    J. Hooley, Mat. Sci. and Eng. 31, 17 (1977).CrossRefGoogle Scholar
  13. 13.
    J. P. Mctague, M. Nielsen and L. Passel in [6], p. 195.Google Scholar
  14. 14.
    S. A. Safran, Phys. Rev. Lett. 44, 937 (1980).CrossRefADSGoogle Scholar
  15. 15.
    S. A. Safran, J. Synth. Metals 2, 1 (1980).CrossRefGoogle Scholar
  16. 16.
    J. Rossat-Mingnod, D. Fruchart, M. J. Moran, J. Milliken, and J. E. Fischer, J. Synth. Metals 2, 143 (1980)CrossRefGoogle Scholar
  17. 17.
    T. Tomita, Prog. Theor. Phys. 59, 1116 (1978).CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    N. Kambe, M. S. Dresselhaus, G. Dresselhaus, S. Basu, A. R. McGhie, and J. E. Fischer, Mat. Sci. Eng. 40, 1 (1979).CrossRefGoogle Scholar
  19. 19.
    I. M. Lifshitz, Sov. Phys. JETP 15, 939 (1962).Google Scholar
  20. 20.
    J. Chalupa (unpublished).Google Scholar
  21. 21.
    P. Sahni & J. Gunton (unpublished).Google Scholar
  22. 22.
    J. R. Banavar, G. S. Grest, D. Jasnow, Phys. Rev. Let. 45, 1424 (1980).CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    S. A. Safran (unpublished).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • S. A. Safran
    • 1
  1. 1.Corporate Research-Science LaboratoriesExxon Research and Eng.LindenUSA

Personalised recommendations