Skip to main content

Electronic Correlation Effects in Cyclic Polyenes and in Polyacetylene

  • Conference paper
Physics of Intercalation Compounds

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 38))

  • 206 Accesses

Abstract

Most papers written nowadays on polyacetylene [1,2] seem to accept as a well-established fact that the origin of the optical gap in trans-(CH)x is due to bond alternation arising from the Peierls instability. Yet a completely different explanation for the origin of the optical gap has been given by OVCHINNIKOV and coworkers [3], who suggested that the gap results from electronic correlations and not from bond alternation. Estimating the relevant physical parameters for polyacetylene from substances such as ethane, benzene, ethylene and graphite [4], they concluded that the electron-phonon coupling is much too small to produce a bond alternation large enough to explain the measured gap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.P. Su, J.R. Schrieffer, and A.J. Heeger, Phys.Rev. Lett. 42, 1698 (1979).

    Article  ADS  Google Scholar 

  2. A. Karpfen and R. Höller, Solid State Commun. 37, 179 (1981).

    Article  ADS  Google Scholar 

  3. A.A. Ovchinnikov, I.I. Ukrainskii, and G.V. Kventsel, Sov. Phys. Usp. 15, 575 (1973).

    Article  ADS  Google Scholar 

  4. T. Kakitani, Prog. Theor. Phys. 51, 656 (1974).

    Article  ADS  Google Scholar 

  5. P. Horsch, submitted to Phys. Rev. B

    Google Scholar 

  6. D. Vanderbilt and E.J. Meie, Phys. Rev. B 22, 3939 (1980).

    Article  ADS  Google Scholar 

  7. H.C. Longuet-Higgins and L. Salem, Proc. Roy. Soc. A 251, 172 (1959).

    Article  ADS  Google Scholar 

  8. I. Ohmine, M. Karplus, and K. Schulten, J. Chem. Phys. 68, 2298 (1978).

    Google Scholar 

  9. G. Stollhoff and P. Fulde, Z. Phys. B 26, 251 ( 1977 ); J. Chem. Phys. 73, 4548 (1980).

    Google Scholar 

  10. P. Horsch and P. Fulde, Z. Phys. B 36, 23 (1979).

    Article  ADS  Google Scholar 

  11. L. Salem, Molecular Orbital Theory of Conjugated Systems (W.A. Benjamin, New York, 1966 ) p. 514.

    Google Scholar 

  12. S. Strässler and L. Pietronero, Festkörperproblerne 21, 313 (1981).

    Google Scholar 

  13. R. A. Harris and L.M. Falicov, J. Chem. Phys. 51 5034 ( 1969 ).

    Article  ADS  Google Scholar 

  14. K.R. Subbaswamy and M. Grabowski, submitted to Phys. Rev. B.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Horsch, P. (1981). Electronic Correlation Effects in Cyclic Polyenes and in Polyacetylene. In: Pietronero, L., Tosatti, E. (eds) Physics of Intercalation Compounds. Springer Series in Solid-State Sciences, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81774-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81774-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81776-2

  • Online ISBN: 978-3-642-81774-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics