Martingalmethoden zur Analyse von Überlebenszeiten

  • R. Repges
Conference paper
Part of the Medizinische Informatik und Statistik book series (MEDINFO, volume 33)


This is an introductory paper to the theory of stochastic differential equations and points out the parallelism between these equations and the linear models of the classical statistics. Survival data analysis can easily be embedded in the analysis of point processes. This allows to investigate a great variety of models and to extend the considerations on more realistic biological processes and, on the other hand, to apply some of the fast developing new techniques of statistical inference for diffusion processes in the medical field. Before this can actually be done, further research work seems necessary.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aalen, O.O. (1978). Nonparametric inference for a family of counting processes. Ann. Stat. 6, 701–726.Google Scholar
  2. Aalen, 0.0; Borgan, b.; Keiding, N.; Thormann, J. (1980). Interaction between Life History Events. Nonparametric Analysis for Prospective and Retrospective Data in the Presence of Censoring. Scand. J. Statist. 7, 161–171.Google Scholar
  3. Basawa, I.V.; Prakasa Rao, B.L.S. (1980). Statistical Inference for Stochastic Processes. Academic Press.Google Scholar
  4. Beck, G.J. (1979). Stochastic survival models with competing risks and covariates. Biometrics 35, 169–180.CrossRefGoogle Scholar
  5. Berk, R.H. (1975). Locally most powerful tests. Ann. Statist. 3, 373–381.Google Scholar
  6. Borgan, O. (1980). To appear in Springer Lecture Notes on Medical Informatics and Statistics.Google Scholar
  7. Brown, B.M. (1974). A sequential procedure for diffusion process, in: E.S. Williams (ed.): Studies in Probability and Statistics, North Holland 1974.Google Scholar
  8. Dvoretzky, A.; Kiefer, J.; Wolfowitz, J. (1953). Sequential decision problems for processes with continuous time parameter. Testing hypotheses. Ann. Math. Statistics 24, 254–264.Google Scholar
  9. Gänssler, P.; Stute, W. (1977). Wahrscheinlichkeitstheorie. Springer.Google Scholar
  10. Irle, A. (1980). Locally best Tests for Gaussian processes. Metrika 27, 15–28.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Irle, A. (1981). Locally most powerful sequential tests for stochastic processes. Stoch. proc. and their Applic. 11, 285–291.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Jacob, J. (1979). Calcul stochastique problèmes de martingale. Lecture Notes in Mathematics 714, Springer.Google Scholar
  13. Liptser, R.S.; Schiryayev, A.N. (1977). Statistics of Random Processes: I General Theory, II Applications. Springer.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • R. Repges
    • 1
  1. 1.Abteilung für Medizinische Statistik und DokumentationRWTH AachenAachenDeutschland

Personalised recommendations