Advertisement

Unsteady Turbulent Shear Flow in Shock Tube Discontinuities

  • Joseph A. JohnsonIII
  • Raghu Ramaiah
  • I Lin
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

Using a pressure-ruptured shock tube and an arc driven shock tube, we have studied the evolution of turbulent fluctuations at contact surfaces with N2O4 2NO2 mixtures and at ionizing shock fronts in argon. We have focused on point density diagnostics derived from crossed light beam correlations and electric probes. Turbulent bursts are found for which dynamical and spectral analyses suggest a particle-like evolution of fluctuation segments with a unique and characteristic frequency, independent of flow history and overall flow conditions.

Keywords

Power Spectrum Shock Front Detonation Wave Shock Tube Blast Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.S. Monin, Sov. Phys. Usp. 21, 429 (1978.)CrossRefADSGoogle Scholar
  2. 2.
    B.J. Cantwell, Am. Rev. Fluid Mech. 13, 457 (1981).CrossRefADSGoogle Scholar
  3. 3.
    A.M. Yoglom, Am. Rev. Fluid Mech.,11, 505 (1979).CrossRefADSGoogle Scholar
  4. 4.
    C. Speziale, Phys. Fluids, 23, 459 (1980).CrossRefMATHADSGoogle Scholar
  5. 5.
    M. Kac, The Boltzmann Equation (New York: Springer) 379 (1973).Google Scholar
  6. 6.
    J.A. Johnson III and S.C. Chen, Phys. Letts., 68A, 141 (1978).ADSGoogle Scholar
  7. 7.
    J.A. Johnson III, W.R. Jones, and J. Santiago, J. Phys. D: Appl. Phys., 13, 1413 (1980).CrossRefADSGoogle Scholar
  8. 8.
    J.A. Johnson III, Appl. Letts., 37, 275 (1980).CrossRefADSGoogle Scholar
  9. 9.
    L.I., J.A. Johnson III and J.P. Santiago (submitted to Journal of Plasma Physics); also Lin I, Ph.D. dissertation 1981 (unpublished).Google Scholar
  10. 10.
    L. Landau and E. Lifshitz, Fluid Mechanics (reading, Mass: Addison-Wesley) 114 (1959).Google Scholar
  11. 11.
    D.R. White, Phys. Fluids, 4, 465 (1961).CrossRefMATHADSGoogle Scholar
  12. 12.
    J.N. Bradley, Shock Waves in Chemistry and Physics, (London:Methuen) 88 (1962).Google Scholar
  13. 13.
    J.A. Johnson III, R. Ramaiah and J. Santiago, Rev. Sci. Instr., (1981, to be published).Google Scholar
  14. 14.
    R.P. Smy, Adv. in Phys., 25, 517 (1976).CrossRefADSGoogle Scholar
  15. 15.
    L.S.G. Kovasznay, Structure and Mechanism in Turbulence, Vol. I, H. Fiedler (ed) (New York: Springer) 1 (1978).Google Scholar
  16. 16.
    R.C. Davidson, Method in Nonlinear Plasma Theory, (New York: Academic), 15 (1972).Google Scholar
  17. 17.
    V.N. Taytovick Theory of Turbulent Plasma (New York: Consultants Bureau) 1 (1977).Google Scholar
  18. 18.
    S. Tsuge, Phys. Fluids, 17, 22 (1974).CrossRefMATHADSGoogle Scholar
  19. 19.
    M.R. Osborne, SIAMJ Appl. Math 15, 539 (1967).CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    G. Sthubauer and P.S. Klebanoff, NACA Report 1289 (1956).Google Scholar
  21. 21.
    R.A. Antonia, H.Q. Dank, A. Prabhu, Phys. Fluids, 19, 1680 (1976).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag, Berlin, Heidelberg 1981

Authors and Affiliations

  • Joseph A. JohnsonIII
    • 1
  • Raghu Ramaiah
    • 1
  • I Lin
    • 1
  1. 1.Department of PhysicsRutgers UniversityNew BrunswickUSA

Personalised recommendations