Sequential Iteration of Threshold Functions

  • E. Golès Chacc
Part of the Springer Series in Synergetics book series (SSSYN, volume 9)


Let Δ be a function from {0,1}n into itself, whose components are thréshold functions. We study the convergence of sequential iteration on Δ. This includes the behaviour of “majority rule” in the spin glass problem.


Length Cycle Majority Rule Threshold Function Magnetic Impurity Sequential Iteration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D’AURIAC ANGLES et VILLON P. “Fluctuations d’aimantation dans un verre de spin par simulation numérique de Monte-Carlo”. Rapport D.E.A. Analyse Numérique, Grenoble 1978.Google Scholar
  2. 2.
    BARAHONA F. “Sur la complexité du problème du verre de spin”. Rapport de Recherche n° 171, IMAG, 1979.Google Scholar
  3. 3.
    GOLES E. and OLIVOS J. “Periodic behaviour of generalized threshold functions”, Discrete Mathematics, 30 (1980) 187–189.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    GOLES E. “Etude des itérations dans un ensemble fini”. Thèse Docteur-Ingénieur, Grenoble, 1980, à paraître.Google Scholar
  5. 5.
    ROBERT F. “Une approche booléenne du problème de la frustration”. Séminaire Analyse Numérique, n° 302, IMAG, Grenoble 1978.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • E. Golès Chacc
    • 1
  1. 1.Laboratoire IMAGGrenoble CédexFrance

Personalised recommendations