Advertisement

MO Stochasticity Criterion

  • R. Caboz
  • A. Lonke
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 9)

Abstract

Using MORI’S method [1], MO has studied several hamiltonian systems with a definite and small degree of freedom n.

Keywords

Hamiltonian System Private Communication Small Degree LAPLACE Transform Moment Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Mori H. Progress in Theoretical Physics (Jap.) 34 (1965) pp.399–416CrossRefADSGoogle Scholar
  2. [2]
    Mo K.C. Physica 57 (1972) pp.445–454CrossRefADSGoogle Scholar
  3. [3]
    Lonke A. and Caboz R. Physica 99 (1979) pp. 350–356CrossRefMathSciNetGoogle Scholar
  4. [4]
    Tabor M. Advances in Chemical Physics — preprint — October 1979Google Scholar
  5. [5]
    Treve Y.M. Topics in Non-Linear Dynamics A.I. P. Conference Proceeding n°46 (1978) p. 177Google Scholar
  6. [6]
    Cerjan C. and Reinhardt W. J. Chem. Phys. 71 (4) 1979 pp. 1819–1831ADSMathSciNetGoogle Scholar
  7. [7]
    Ford J. Private communication 21.11.1978Google Scholar
  8. [8]
    Baker G. A. Jr. Essentials of Padé Approximants Academic Press N. Y. 1975Google Scholar
  9. [9]
    Gilewicz J. Lecture Notes in Mathematics n°667 – 1978 — SPRINGERGoogle Scholar
  10. [10]
    Gilewicz J. Private communication 22.4.1980Google Scholar
  11. [11]
    Brezinski C. Private communications 7.5.1980 and 16.5.1980Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • R. Caboz
    • 1
  • A. Lonke
    • 2
  1. 1.Laboratoire de Physique Appliquée, I.U.R.S.Université de PauAvenue PhilipponPauFrance
  2. 2.Ben Gurion UniversityBeer ShevaIsrael

Personalised recommendations