Padé-Hermite Approximants

  • J. Della Dora
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 9)


The result will be given for three formal power series. Nevertheless the theory is general; we can work with any number of series.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Della Dora, J.: Contribution a l’approximation de fonctions de la variable complexe au sens de Hermite-Padé et de Hardy, Thèse présentée à l’USMG (20 juin 1980)Google Scholar
  2. 2.
    Della Dora, J., Di Crescenzo, C.: “Approximation de Padé-Hermite”, in Padé Approximation and Its Applications. Proceedings, Antwerp, 1979, ed by L. Wuytack, Lecture Notes in Mathematics, Vol. 765 (Springer Berlin, Heidelberg, New York 1979)CrossRefGoogle Scholar
  3. 3.
    Della Dora, J., Di Crescenzo, C.: Approximants de Padé-Hermite. Part I: Theorie, Part II: Algorithms and Applications, Submitted to Numerische MathematikGoogle Scholar
  4. 4.
    Brezinski, C.: Accéleration de la Convergence en Analyse Numérique, Lecture Notes in Mathematics, Vol. 584 (Springer Berlin, Heidelberg, New York 1977)MATHGoogle Scholar
  5. 5.
    Baker, G.A.: Essentials of Pade Approximants. Academic Press, New-York (1975)MATHGoogle Scholar
  6. 6.
    Shafer, R.E.: On quadratic approximation. SIAM J. Numer. Anal. Vol. 11, Nr. 2 (April 1974) 447–460.CrossRefMATHADSMathSciNetGoogle Scholar
  7. 7.
    Gragg, W.B.: The Pade table and its relation to certain algorithms of numerical analysis. SIAM Rev. (1972) Nr. 14; 1–62.Google Scholar
  8. 8.
    Gilewicz, J.: Approximants de Padé, Lecture Notes in Mathematics, Vol. 667 (Springer Berlin, Heidelberg, New York 1978)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • J. Della Dora
    • 1
  1. 1.Laboratoire d’Informatique et de Mathématiques AppliquéesUniversité de Grenoble IGrenoble CédexFrance

Personalised recommendations