Skip to main content

Part of the book series: Medizinische Informatik und Statistik ((MEDINFO,volume 30))

  • 15 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. R. Aaslid, Simulation of the individual cardiovascular system Report 74–51-W Norwegen, Techn. Hochschule Trondheim (1974)

    Google Scholar 

  2. J. E. Allen, H. Rasmussen, Human red blood cells: prostaglandine E2, epinephrine and isoproterenol alter deformability Science 174: 512–514 (1971)

    Google Scholar 

  3. C. M. Anderson, J. W. Clark, Analog simulation of left ventricular bypass mode control IEEE Trans. BME 22: 384–392 (1975)

    Article  Google Scholar 

  4. M. Anlauf, Kreislaufmechanik bei arterieller Hypertonie In: Hoher Blutdruck, S. 31–38 Hrsg.: R Gotzen, F. W. Lohmann Heidelberg, Springer (1979)

    Google Scholar 

  5. M. Aoki, Introduction to optimization techniques New York, Macmillan Comp. (1971)

    Google Scholar 

  6. E. Asmussen, M. Nielsen, Cardiac output during muscular work and its regulationPhysiol. Rev. 35: 778–800 (1955)

    Google Scholar 

  7. P. O. Åstrand, T. E. Cuddy, B. Saltin, J. Stenberg, Cardiac output during submaximal and maximal work J. Appl. Physiol. 19: 268–274 (1964)

    Google Scholar 

  8. K. J. Âström, P. Eykhoff, System identification a survey Automatica 7: 123–162 (1971)

    MATH  Google Scholar 

  9. G. Avanzolini, E. Belardinelli, G. Capitani, R. Passigato, Steady state numerical model of the arterial peripheral system IFAC-Sympos. Brüssel 1971, S. 83–97 L’automatisation et les calculateurs dans le domaine medical

    Google Scholar 

  10. J. Baan,Model of the left ventricle based on an electromagnetic contractile analog of cardiac muscle In: Cardiovascular system design, S. 85–98. Hrsg.: J. Baan, A. Noordergraaf, J. Raines Cambridge, Massachussetts, MIT-Press (1978)

    Google Scholar 

  11. K. Bachmann, Arbeitsbelastung und Hypertonie In: Hypertonie, S. 149–160Hrsg.: H. SarreStuttgart, F. K. Schattauer (1969)

    Google Scholar 

  12. R. J. Bagshaw, R. H. Cox, Mechanoreceptor control of regional pressure flow relationship in the anesthetized dog In: Cardiovascular system design, S. 271–279. a.a.o.

    Google Scholar 

  13. Physiologisches Praktikum für Mediziner Hrsg.: W. Barnikol Mainz, Eigendruck (1979)

    Google Scholar 

  14. J. P. Barras, L’ecoulement du sang dans les capillaries Helvetia Med. Acta 34: 468–477 (1967/ 68)

    Google Scholar 

  15. R. D. Bauer, T. Pasch, E. Wetterer, Biomechanik des Blutkreislaufs In: Biophysik, S. 551–561 Hrsg.: W. Hoppe, W. Lohmann, H. Markl, H. Ziegler; Heidelberg, Springer (1977)

    Google Scholar 

  16. )M. Becklake, H. Frank, G. R. Dagenias, G. L. Ostiguy, C.A. Guzman, Influence of age and sex on exercise cardiac output J. Appl. Physiol. 20: 938–947 (1965)

    Google Scholar 

  17. G.E. Bekey, J. E. W. Beneken, Identifacation of biological systems: a survey Automatica 14: 41–47 (1978)

    Google Scholar 

  18. J. E. W. Beneken, A mathematical approach to cardiovascular function Dissertation, Universität Utrecht (1965)

    Google Scholar 

  19. J. E. W. Beneken, B. de Witt, A physical approach to hemodynamic aspects of the human cardiovascular system In: Physical basis of circulatory transport Hrsg.: E. B. Reeve, A. C. Guyton Philadelphia, Saunders Publ. Comp. (1967)

    Google Scholar 

  20. E. Berglund, Ventricular function Amer. J. Physiol. 178: 381–386 (1954)

    Google Scholar 

  21. S. Bevegard, A. Holmgren, B. Jonsson, The effect of body position on the circulation at rest and during exercise, with special reference to the influence on the stroke volume Acta physiol. Scand. 49: 279–298 (1960)

    Article  Google Scholar 

  22. S. Bevegard, A. Holmgren, B. Jonsson, Circulatory studies in well trained athletes at rest and during heavy exercise, with special references to stroke volume and the influence of body position Acta physiol. Scand. 57: 26–50 (1963)

    Article  Google Scholar 

  23. K. D. Bock, Hochdruck Stuttgart, Thieme (1975)

    Google Scholar 

  24. J. G. G. Borst, A. Borst De Geus, Hypertension explained by starling’s theory of circulatory homoeostasis The Lancet, 30th March, 667–682 (1963)

    Google Scholar 

  25. J. D. Bristow, A. J. Honour, G. W. Pickering, P. Sleight, H. S. Smyth, Diminished baroreflex sensitivity in high blood pressure Circulat. Res. 39: 48–54 (1969)

    Google Scholar 

  26. J. Brod, Hämodynamik der Hypertonie In: Aktuelle Hypertonieprobleme S. 74–88 Hrsg.: H. Losse, R. Heintz Stuttgart, Thieme (1973)

    Google Scholar 

  27. D. W. Bronk, G. Stella, The response to steady pressure of single end organs in the isolated carotid sinus Amer. J. Physiol. 110: 708–714 (1934/ 35)

    Google Scholar 

  28. A. B. Brown, W. R. Saum, S. Yasui, Baroreceptor dynamics and their relationship to afferent fiber type and hypertension Circulat. Res. 42: 694–702 (1978)

    Google Scholar 

  29. A. Bühlmann, Beziehungen zwischen Herz-und Lungenfunktion Schweiz. med. Wschr. 92: 573–579 (1962)

    Google Scholar 

  30. R. D. Busse, Ein neuer theoretischer und experimenteller Weg zur Bestimmung des Übertragungsmaßes und des Wellenwiderstandes an Arterien in situ Habilitationsschrift (1976) Universität, Erlangen-Nürnberg

    Google Scholar 

  31. H. Cain, B. Kraus, The juxtaglumerolar apparatus in malignant hypertension in man Virchow Arch. A. Path. Anat. Histol. 372: 11–28 (1976)

    Article  Google Scholar 

  32. R. B. Case, E. Berglund, S. J. Srnoff, Ventricular function Circulat. Res. 2: 319–325 (1954)

    Google Scholar 

  33. S. Chien, S. Usami, R. J. Dellenbach, M. I. Gregersen, Blood viscosity: influence of erythrocyte deformation Science 157: 827–829 (1967)

    Google Scholar 

  34. S. Chien, S. Usami, R. J. Dellenbach, M. I. Gregersen, Blood viscosity: influence of erythrocyte aggregation Science 157: 829–831 (1967)

    Google Scholar 

  35. B. N. Christensen, H. R. Warner, T. A. Pryor, A technique for the quantitative study of carotid sinus behavior In: Baroreceptors and hypertension S. 41–50. Hrsg.: P. Kezdi New York, Pergamon Press (1967)

    Google Scholar 

  36. J. W. Clark, R. Y. S. Ling, R. Srinivasan, J. S. Cole, R. C. Pniett, A two stage identification scheme for the determination of the parameters of a model of left heart and systemic circulation IEEE Trans. BME 27: 20–29 (1980)

    Article  Google Scholar 

  37. T. G. Coleman, A. C. Guyton, Hypertension caused by salt loading Circ. Res. 25: 153–160 (1969)

    Google Scholar 

  38. A. M. Cook, J. G. Simes, A simple heart model designed to demonstrate biological system simulation IEEE Trans. BME 19: 97–100 (1972)

    Article  Google Scholar 

  39. F. Csaki, Die Zustandsraummethode in der Regelungstechnik Düsseldorf, VDI (1973)

    Google Scholar 

  40. J. W. Cubbin, J. H. Green, I. H., Page, Baroreceptor function in chronic renal hypertensionCirculat. Res. 4: 205–210 (1965)

    Google Scholar 

  41. I. De Brugh Dalay, A closed circuit heart lung preparation J. Physiol. 60: 103–108 (1925)

    Google Scholar 

  42. B. A. Deswysen, Parameter estimation of a simple model of the left ventricle and of the systemic vascular bed, with particular attention to the physical meaning of the heart ventricular parameters IEEE Trans. BME 24: 29–38 (1977)

    Article  Google Scholar 

  43. B. A. Deswysen, Optimum choice of the statistical parameters of a nonlinear filter applied to cardiovascular parameter estimation In: Identification and system parameter estimation, S. 561–571Hrsg.: N. S. Rajbman North-Holland Pub. Comp. (1978)

    Google Scholar 

  44. D. E. Dick, An hybrid computer study of major transients in the canine cardiovascular system Dissertation, Universität Wisconsin (1968)

    Google Scholar 

  45. K. H. Dittberner, E. Zerbst, Analyse der Funktion biologischer Meßfühler und Demonstration eines elektrischen Rezeptormodells Biokybernetik 2: 146–152 (1968)

    Google Scholar 

  46. B. H. Douglas, A. C. Guyton, J. B. Langston, V. S. Bishop, Hypertension caused by salt loading II: Fluid volume and tissue pressure changes Amer. J. Physiol. 207: 669–671 (1964)

    Google Scholar 

  47. H. P. Dustan, R. Tarazi, E. Bravo, Physiologic characteristics of hypertension Amer. J. Med. 52: 610–622 (1972)

    Article  Google Scholar 

  48. R. H. Eich, Hemodynamics in labile hypertension Circulation 34: 299–307 (1966)

    Google Scholar 

  49. P. Eykhoff, System identification London, John Wiley & Sons (1974)

    Google Scholar 

  50. R. Fahraeus, T. Lindquist, The viscosity of blood in narrow capillary tubes Amer. J. Physiol. 96: 562–568 (1931)

    Google Scholar 

  51. B. T. Fairchild, L. J. Krovetz, C. E, Digital, Computer simulation of arterial blood flow In: Chemical engineering in medicine and biology Hrsg.: D. Hershey New York, Plenum Press (1967)

    Google Scholar 

  52. M. H. Finneberg, C. J. Wiggers, Compensation and failure of the right ventricle Amer. Heart J. 11: 255–258 (1936)

    Article  Google Scholar 

  53. H. Flohr, W. Breull, H. W. Dahners, D. Redel, H. Conradi, K. Stoepel, Regional distribution of vascular resistance in two models of hypertension Pflügers Arch. 362: 157–164 (1976)

    Google Scholar 

  54. B. Folkow, Strukturelle Anpassung peripherer Blutgefäße bei der Entstehung eines hohen Blutdruckes In: Essentieller Hochdruck und seine Behandlung, S. 64–82 Hrsg.: R. Dietz, D. Ganten, K. G. Hofbauer, J. B. Lüth Stuttgart, Schattauer (1977)

    Google Scholar 

  55. O. Föllinger, Nichtlineare Regelungen Bd. 3 München, Oldenburg (1970)

    Google Scholar 

  56. O. Föllinger, Laplace-und Fourier-Transformation Berlin, Elitera (1977)

    Google Scholar 

  57. O. Föllinger, Regelungstechnik Berlin, Elitera (1978)

    Google Scholar 

  58. I. W. Franz, F. W. Lohmann, Die Bedeutung der ergometrischen Untersuchung zur Beurteilung der antihypertensiven Therapie Dtsch. med. Wschr. 103: 1478–1481 (1978)

    Article  Google Scholar 

  59. E. D. Frohlich, M. Ulrych, R. C. Tarazi, H. P. Dustan, I.H. Page, A hemodynamic comparison of essential and renovascular hypertension Circulation 35: 289–297 (1967)

    Google Scholar 

  60. O. H. Gauer, Kreislauf des Blutes In: Physiologie des Menschen, Bd. 3, S. 81–305 Hrsg.: O. H. Gauer, K. Kramer, R. Jung München, Urban u. Schwarzenberg (1972)

    Google Scholar 

  61. W. Giloi,Simulation and Analyse stochastischer VorgängeMünchen, Oldenburg (1967)

    Google Scholar 

  62. W. Giloi, Priniciples of continous system simulationStuttgart, Teubner (1975)

    Google Scholar 

  63. J.J. Granger, Quantitative analysis of autoregulation and interstitial fluid dynamics Dissertation, Universität Jackson-Mississippi (1970)

    Google Scholar 

  64. M. E. Greene, J. W. Clarke, The innervated left ventricle: a mathematical model of function Med. Biol. Eng. 11: 464–468 (1973)

    Article  Google Scholar 

  65. G. Grimby, N. J. Nilsson, B. Saltin, Cardiac output during submaximal and maximal exercise in active middle-aged athletes J. Appl. Physiol. 21: 1150–1156 (1966)

    Google Scholar 

  66. H. Grobecker, P. HoltzBiochemische Grundlagen der sympathischen Kreislaufregulation In: Hypo-und Hypertonie, S. 85–113 Hrsg.: D. Gross Stuttgart, Hippokrates (1973)

    Google Scholar 

  67. F. S. Grodins, Control theory and biological systems New York, Columbia University Press (1963)

    Google Scholar 

  68. F. Gross, Niere und Hochdruck Klin. Wschr. 50: 621–635 (1972)

    Article  Google Scholar 

  69. F. Grosse-Brockhoff Pathologische Physiologie Heidelberg, Springer (1969)

    Google Scholar 

  70. A. C. Guyton, W. Lindsey, J. J. Gilluly, The limits of right ventricular compensation following acute increase in pulmonary circulatory resistance Circulat. Res. 2: 326–332 (1954)

    Google Scholar 

  71. A. C. Guyton, T. G. Coleman Long-term regulation of the circulation: interelationships with body fluid volumes In: Physical basis of circulatory transport, S. 179–201, a.a.O.

    Google Scholar 

  72. A. C. Guyton, T. G. Coleman, J. D. Bower, H. J. Granger, Circulatory control in hypertension Circ. Res. Suppl. 2 26 /27: 135–147 (1970)

    Google Scholar 

  73. A. C. Guyton, T. G. Coleman, A. W. Cowley, K. W. Scheel, R. D. Manning, Arterial pressure regulation Amer. J. Physiol. 52: 584–594 (1972)

    Google Scholar 

  74. R. A. Norman, A. C. Guyton, D. B. Young, J. W. Declue, I. D. Ferguson, R. E. McCaa, A. Cevese, The role of kidney in hypertension In: Pathophysiology and managment of arterial hypertension, S. 78–91 Hrsg.: G. Berglund, L. Hansson, L. Werkö Mölndal, Lindgren und Söner (1975) N.J.C. E. Trippodo, Hall

    Google Scholar 

  75. A. C. Guyton, Textbook of medical physiology Philadelphia, Saunders (1976)

    Google Scholar 

  76. W. I. Hanna, A simulation of human heart function Biophys. J. 13: 603–621 (1973)

    Article  Google Scholar 

  77. O. Harth, Nierenfunktion In: Physiologie des Menschen, S. 607–650 Hrsg. R. F. Schmidt, G. Thews Heidelberg, Springer (1978)

    Google Scholar 

  78. I. Hartmann, Lineare Systeme Heidelberg, Springer (1976) Amer. J. Physiol. 197: 943–950 (1950)

    Google Scholar 

  79. I. Hatakeyama, Analysis of baroreceptor control of the circulation In: Physical basis of circulatory transport, S. 91–112, a.a.o

    Google Scholar 

  80. R. A. H. C. Haynes, Burton Role of non-newtonian behavior of blood in hemodynamics Amer. J. Physiol. 197: 943–950(1950)

    Google Scholar 

  81. R. H. Haynes, Physical basis of the dependence of blood viscosity on tube radius Amer. J. Physiol. 198: 1193–1200 (1960)

    Google Scholar 

  82. Z. Hejl, Changes in cardiac output and peripheral resistance during simple stimuli influencing blood pressure Cardiologica 31: 375–381 (1957)

    Google Scholar 

  83. E. Hofer, R. Lunderstädt, Numerische Methoden der Optimierung München, Oldenburg (1975)

    Google Scholar 

  84. A. Holmgren, B. Jonsson, T. Sjostrand, Circulatory data in normal subjects at rest and during exercise in recumbent position, with special reference to stroke volume at different work intensities Acta physiol. Scand. 49: 343–363 (1967)

    Google Scholar 

  85. L. L. Huntsmann, Control of peripheral vascular restistance: experimental and theoretical studies Dissertation, Universität Jackson? Mississippi (1970)

    Google Scholar 

  86. F. Husemann, Das Bild des Menschen als Grundlage der Heilkunst Bd II/2 Hrsg.: E. Wolff Stuttgart, Freies Geistesleben (1978)

    Google Scholar 

  87. W. W. Irnich, Bleifeld Determination of the pressure volume characteristics of the aorta in vivo Biomed. Techn. 17: 84–86 (1972)

    Google Scholar 

  88. R. Jacob, Wechselwirkungen zwischen’ Volumen und Leistung des linken Ventrikels im akuten Versuch Ärztliche Forschung 22: 329–348 (1968)

    Google Scholar 

  89. J. Jahnecke, Risikofaktor Hypertonie MannheimBoehringer (1974)

    Google Scholar 

  90. W. Jentsch, Digitale Simulation kontinuierlicher Systeme München, Oldenburg (1969)

    Google Scholar 

  91. M. Kaltenbach, Die Belastungsuntersuchung von Herzkranken Mannheim, Boehringer (1974)

    Google Scholar 

  92. P. G. Katona, O. Barnett, W. D. Jachson, Computer simulation of the blood pressure control of the heart period In: Baroreceptors and Hypertension, S. 191–199 a.a.O.

    Google Scholar 

  93. I. N. Katz, W. W.se,K. Jochim, The dynamics of the isolated heart and heart-lung preparations of the dog Amer. J. Physiol. 143: 463–478 (1945)

    Google Scholar 

  94. L. N. Katz, W. Wise, K. Jochirr, The control of the coronary flow in the denervated isolated heart and heart-lung preparation of the dog Amer. J. Physiol. 143: 479–494 (1945)

    Google Scholar 

  95. L. N. Katz, W. Wise, K. Jochim, The dynamics of the non failure period of the isolated heart and heart-lung preparation Amer. J. Physiol. 143: 495–506 (1945)

    Google Scholar 

  96. L. N. Katz, W. Wise, K. Jochim, The dynamic alterations in heart failure in the isolated heart and heart-lung preparationAmer. J. Physiol. 143: 507–520 (1945)

    Google Scholar 

  97. T. Kenner,The central arterial pulses Pflügers Arch. 353: 67–81 (1975)

    Google Scholar 

  98. H. P. Krayenbühl, Das enddiastolische Volumen der linken Kammer beim Menschen, bestimmt mit der Thermodilutionsmethode Arch. Kreisl. Forsch. 58: 1–35 (1969)

    Article  Google Scholar 

  99. G. J. Langewouters, K. H. Wesseling, W. J. A. Goedhard, Dynamic behaviour of human aortas in vitro Progress Report 6 (1978) Inst. Med. Phys. TNO, Utrecht

    Google Scholar 

  100. J. K. Ledingham, The role of the heart in the pathogenese of renal hypertension Lancet 2: 979–981 (1963)

    Google Scholar 

  101. G. Lekkas, D. Rufer,W. Schaufelberger, Identifikation dynamischer Systeme durch nichtlinearen Modellabgleich Scientia Electrica 24: 65–100, 101–144 (1978)

    Google Scholar 

  102. W. H. Levison, G. O. Barnett, W. D. Jackson, Nonlinear analysis of the baroreceptor reflex system Circ. Res. 18: 673–682 (1966)

    Google Scholar 

  103. B. M. Lewis, H. E. J. Houssay, F. W. Haynes, L. Dexter, The dynamics of both right and left ventricles at rest and during exercise in patients with heart failure Circulat. Res. 1: 312–320 (1953)

    Google Scholar 

  104. F. W. Lohmann, Praxis der medikamentösen Hochdrucktherapie In: Hoher Blutdruck, S. 122–134 a.a.O.

    Google Scholar 

  105. H. Luczak, Untersuchungen informatorischer Belastung und Beanspruchung des Menschen Düsseldorf, VDI-Verlag (1975)

    Google Scholar 

  106. G. Ludyk, Theorie dynamischer Systeme Berlin, Elitera (1977)

    Google Scholar 

  107. Y. Lundgren, Adaptive changes of cardiovascular design in spontaneous and renal hypertension Acta physiol. Scand. Suppl. 408: (1974)

    Google Scholar 

  108. E. W. Merril, Rheology of blood Physiol. Rev. 49: 863–888 (1969)

    Google Scholar 

  109. H. Moll, H. Burkhardt, SIDAS, ein interaktives Progammsystem zur blockorientierten digitalen Simulation dynamischer Systeme Regelungstechnik 26: 50–55, 87–91 (1978)

    Google Scholar 

  110. D. Möller, A closed model of the cardiovascular system including the baroreceptor system: interactive block diagrammed digital simulation at rest and workload Pflügers Arch. Suppl. R 12: 382 (1979)

    Google Scholar 

  111. D. Möller, Short-and longterm regulation model for arterial pressure regulation Proceedings IUPS Vol. XIV (1980) S. 597 Budapest (Ungarn)

    Google Scholar 

  112. D. Möller, Simulation of a closed nonlinear average model of the cardiovascular system erscheint in: Cardiovascular system dynamics:models and measurement Hrsg.: Th. Kenner, H. HinghoferSzalkay Plenum Publishing Comp. (1981)

    Google Scholar 

  113. D. L. Newman, N. Westerhof, P. Siphema, Modelling of aortic stenosis J. Biomechanics 12: 229–235 (1979)

    Article  Google Scholar 

  114. A. Noordergraaf, Circulatory system dynamics New York, Academic Press (1978)

    Google Scholar 

  115. P. A. Oberg, U. Sjöstrand, Studies of blood-pressure regulation. I. Common-carotid-artery clamping in studies of the carotid-sinus baro-receptor control of the systemic blood pressure Acta physiol. Scand. 75: 276–300 (1969)

    Article  Google Scholar 

  116. K. Ogata, State space analysis of control systems Englewood, Prentice Hall (1967)

    Google Scholar 

  117. W. J. Ohley, C. Kav, D. Jaron,Validity of an arterial system: a quantitative evaluation IEEE Trans. BME 27: 203–211 (1980)

    Article  Google Scholar 

  118. L. de Pater, An electrical analogue of the human circulatory system Dissertation, Universität Groningen (1966)

    Google Scholar 

  119. L. H. Peterson,Systems behavior, feed-back loops, and high blood pressure research Circ. Res. 12: 585–596 (1963)

    Google Scholar 

  120. W. D. Pickering, P. N. Nihiforuk, J. E. Merriman, Analog computer model of the human cardiovascular control system Med. Biol. Eng. 7: 401–410 (1969)

    Article  Google Scholar 

  121. J. J. Pitteloud, Theoretische Grundlagen der Herzfrequenzprüfungen Schweiz. med. Wschr. 92: 712–716 (1962)

    Google Scholar 

  122. J. W. Poitras, N. Pantelokis, C. W. Marble, K. R. Dwyer, G. O. Barnett, P. G. Katona, Analysis of the blood pressure baro-receptor nerve firing relationsship Eng. Med. Biol. Proc. 19th Annual Conference (1966) S. 105

    Google Scholar 

  123. Prozeßidentifikation mit Bezugsmodell: 1. Gradientenmethode Hrsg. D. Popovie Bremen, Eigendruck (1980)

    Google Scholar 

  124. U. Ranft, R. Pestel,Ein einfaches Gefäßmodell zur Simulation stationären Kreislaufverhaltens, Teil 1 Biomed. Techn. 19: 102–105 (1974)

    Google Scholar 

  125. U. Ranft, Zur Mechanik und Regelung des Herzkreislaufsystems - Ein digitales Simulationsmodell Heidelberg, Springer (1978)

    Google Scholar 

  126. H. Reul, B. Tesch, J. Schoemackers, S. Effert, Hydromechanical simulation of systemic circulation Med. Bio. Eng. 12: 431–436 (1974)

    Google Scholar 

  127. V. C. Rideout, J. B. Sims,Computer study of the effects of small nonlinearities in the arterial system Math. Biosciences 4: 411–426 (1969)

    Google Scholar 

  128. M. Rödenbeck,Beiträge zur Modelltheorie des arteriellen und venösen Systems Dissertation, Universität Leipzig (1963)

    Google Scholar 

  129. H. Roskamm, Ch. Hahn, Ventricular function at rest and during exercise Heidelberg, Springer (1976)

    Google Scholar 

  130. R. Rost,Kreislaufreaktion und -adaptation unter körperlicher Belastung Bonn, Osang (1979)

    Google Scholar 

  131. D. Rufer,Optimale Steuerung des Zweikörper-problems Dissertation, ETH-Zürich (1975)

    Google Scholar 

  132. D. Rufer, Implementation and properties of a method for the identification of nonlinear continous time models IFAC 7th Triennial World CongreB Helsinki (1968) Vol. 3, S. 1919–1926 Hrsg.: A. Niemi

    Google Scholar 

  133. L. Sachs, Statistische Methoden Heidelberg, Springer (1970)

    Google Scholar 

  134. A. P. Sage, J. L. Melsa, System identification New York, Academic Press (1971)

    Google Scholar 

  135. F. L. Schmidt, Herzschlagfrequenz und Leistung Basel, Karger (1973)

    Google Scholar 

  136. R. Schosser, K. E. Arfors, K. Messmer, MIC-II a program for the determination of cardiac output, arterio-venous shunt and regional blood flow using the radioactive microsphere method Computer Progr.Biomed. 9: 19–38 (1979)

    Google Scholar 

  137. E. Schütz, H. Caspers, E. J. Speckmann, Physiologie München, Urban u. Schwarzenberg (1978)

    Google Scholar 

  138. E. E. Selkurit, Effect of pulse pressure and mean arterial pressure modification on renal hemodynamics and electrolyte and water excretion Circulat. 4: 541–551 (1951)

    Google Scholar 

  139. W. Siegenthaler, U. Veragut, C. Werning, Blutdruck In: Klinische Pathophysiologie, S. 617–639 Hrsg.: W. Siegenthaler J. B. Sims Stuttgart, Thieme (1976)

    Google Scholar 

  140. J. B. Sims,An hybrid computer aided study of parameter estimation in the systemic circulation Dissertation, Universität Wisconsin (1970)

    Google Scholar 

  141. W. I. Smirnow, Lehrbuch der höheren Mathematik, Teil 2 Berlin, VEB Deutscher Verlag der Wissenschaften (1972)

    Google Scholar 

  142. M. F. Snyder, V. C. Rideout, Analog studies of the human systemic arterial tree J. Biomechanics 2: 121–143 (1968)

    Google Scholar 

  143. M. F. Snyder, A study of the human venous system using hybrid computer modelling Dissertation, Universität Wisconsin (1969)

    Google Scholar 

  144. M. F. Snyder, V. C. Rideout, Computer simulation studies of the venous circulation IEEE Trans. BME 16: 325–334 (1969)

    Article  Google Scholar 

  145. J. Stegemann, Th. Kenner, A theory on heart rate control by muscular metabolic receptors Arch. Kreislauff. 64: 185–214 (1971)

    Article  Google Scholar 

  146. J. Stegemann Leistungsphysiologie Stuttgart, Thieme (1977)

    Google Scholar 

  147. G. Thews Der Blutdruck des Menschen–seine Messung und Bewertung Schriftenreihe d. Bundesapothekerkammer z. wiss. Fortbildung Bd. V/Gelbe Reihe, 39–59 (1977)

    Google Scholar 

  148. G. Thews, E. Mutschler, P. Vaupel, Anatomie, Physiologie, Pathophysiologie des Menschen Stuttgart, Wissenschaftl. Verlagsgesellschaft (1980)

    Google Scholar 

  149. W. S. Tropham, H. R. Warner, The control of cardiac output during exercise In: Physical basis of circulatory transport, S. 77–90 a.a.O.

    Google Scholar 

  150. J. Tuckman, S. Slater, M. Mendlowitz The role of the carotid sinus reflexes in hemodynamic regulation in normotensive and hypertensive man In: Baroreceptors and Hypertension S. 333–347, a.a.O.

    Google Scholar 

  151. H. Unbehauen, B. Göhring, B. Bauer, Parameterschätzverfahren zur Systemidentifikation München, Oldenburg (1974)

    Google Scholar 

  152. M. B. Valloton, Pathophysiologie de l’hypertension arterielle Schweiz. med. Wschr. 106: 1766–1772 (1976)

    Google Scholar 

  153. A. Waldeyer, Anatomie des Menschen 1. Teil Berlin, De Guyter (1967)

    Google Scholar 

  154. H. R. Warner, R. O. Russel, Effect of combined sympathetic and vagal stimulation on heart rate in the dog Circ. Res. 24: 567–573 (1969)

    Google Scholar 

  155. H. R. Warner, R. O. Russel, Effect of combined sympathetic and vagal stimulation on heart rate in the dog Circ. Res. 24: 567–573 (1969)

    Google Scholar 

  156. W. Weizel, Lehrbuch der theoretischen Physik Bd. 1 Heidelberg, Springer (1955)

    Google Scholar 

  157. R. E. Wells, E. W. Merrill, Shear rate dependence of the viscosity of whole blood and plasma Science 133: 763–764 (1962)

    Google Scholar 

  158. L. Werkö, E. Varnaushas, Further evidence that the pulmonary capillary venous pressure pulse in man reflects cyclic pressure changes in the left atrium Circulat. Res. 1: 337–339 (1953)

    Google Scholar 

  159. L. Werkö, E. Varnaushas, H. Eliasch, B. Thomasson, The influence of the pulmonary arterial pressure on the pulmonary capillary venous pressure in man Circulat. Res. 2: 319–325 (1954)

    Google Scholar 

  160. C. Werning, Das Renin-Angiotensin-AldosteronSystem Stuttgart, Thieme (1972)

    Google Scholar 

  161. C. Werning, Kurzes Lehrbuch der Hochdruckkrankheiten Stuttgart, F. Enke (1975)

    Google Scholar 

  162. C. Werning, Die Bedeutung des Renin-Angiotensin Aldosteron Systems bei primären und sekundären Hochdruckformen notabene medici 6: 22–32 (1976)

    Google Scholar 

  163. K. H. Wesseling, B. de Witt, J. E. W. B.neken, Arterial haemodynamic parameters derived from non-invasively recorded pulsewaves, using parameter estimation Med. Biol. Eng. 11: 724–731 (1973)

    Google Scholar 

  164. N. Westerhof, F. Bosman, C. J. de Vries, A. Noordergraaf, Analog studies of the human systemic tree J. Biomechanics 2: 121–143 (1969)

    Google Scholar 

  165. E. Wetterer, Th. Kenner, Grundlagen der Dynamik des Arterien-pulses Heidelberg, Springer (1968)

    Google Scholar 

  166. K. Witzig, Ober erzwungene Wellenbewegungen zäher, inkompressibler Flüssigkeiten in elastischen Röhren Dissertation, Universität Bern (1914)

    Google Scholar 

  167. E. Witzleb, Funktionen des Gefäßsystems In: Physiologie des Menschen, S. 386–451, a.a.O.

    Google Scholar 

  168. W. Yongchareon, D. F. Young, Inition of turbulence in models of arterial stenosis J. Biomechanicus 11: 185–196 (1979)

    Article  Google Scholar 

  169. E. Zerbst, Analyse der Informationsaufnahme und K. H. Dittberner -verarbeitung durch biologische Rezeptoren Leipzig, Thieme (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Möller, D. (1981). Literatur. In: Ein geschlossenes nichtlineares Modell zur Simulation des Kurzzeitverhaltens des Kreislaufsystems und seine Anwendung zur Identifikation. Medizinische Informatik und Statistik, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81665-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81665-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10878-8

  • Online ISBN: 978-3-642-81665-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics