Advertisement

Die Verfahren der Emissions-Computertomographie und Ihre Grenzen

  • K. Jordan
Conference paper
Part of the Medizinische Informatik und Statistik book series (MEDINFO, volume 27)

Zusammenfassung

Die über 50 Jahre alten konventionellen Methoden der fokussierenden Tomographie in der Röntgendiagnostik liefern eine relativ scharfe Abbildung in einer vorbestimmten Ebene, der Fokusebene, während alle benachbarten Schichten mehr oder weniger stark verschmiert (blurred) wiedergegeben werden. Diese Verfahren wurden zunächst auch in der Emissionstomographie eingesetzt und müssen der longitudinalen Schichttechnik zugeordnet werden, d.h. die einzelnen dargestellten Objektschichten liegen parallel zu der Ebene, in der sich der Detektor bewegt bzw. die Detektorebene liegt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. (1).
    Anger, H.O.: Tomographic Gamma-Ray Scanner with Simultaneous Readout of Several Planes. In: Fundamental Problems in Scanning, 195–211, Charles C. Thomas, Springfield 1968Google Scholar
  2. (2).
    Miraldi, F., Di Chiro, G.: Tomographic Techniques in Radioisotope Imaging with a Proposal of a New Device: The Tomoscanner. Radiology 94, 513–520, 1970Google Scholar
  3. (3).
    Jordan, K., Friel, H.J., Gettner, U., et al.: A New Concept of an Experimental Tomographic Scanner. First World Congress of Nuclear Medicine, Tokyo 1974. Proc. 1274Google Scholar
  4. (4).
    Kuhl, D.E., Edwards, R.Q.: Image Seperation Radioisotop.e Scanning. Radiology 80, 653–661, 1963Google Scholar
  5. (5).
    Kuhl, D.E., Edwards, R.Q.: The Mark III Scanner: A Compart Device for Multiple-View and Section Scanning of the Brain. Radiology 96, 563–570, 1970Google Scholar
  6. (6).
    Muehllehner, G., Wetzel, R.A.: Section Imaging by Computer Calculation. J. Nucl. Med. 12, No. 2, 76–84, 1971Google Scholar
  7. (7).
    Kuhl, D.E., Edwards, R.Q., Ricci, A.R., Reivich, M.: Quantitative Section Scanning using Orthogonal Tangent Correction. J. Nucl. Med. 14, No. 4, 196–200, 1973Google Scholar
  8. (8a).
    Lottes, G., Jordan, K.: Anwendung von iterativen Korrekturverfahren bei der longitudinalen Tomographie. In: Nuklearmedizin 14, 1976, Bd. II, 460–464, Medico-Informationsdienste, Berlin 1978Google Scholar
  9. (8b).
    Lottes, G., Jordan, K.: Vergleich von verschiedenen Rekonstruktions-Algorithmen bei der longitudinalen Emissions-Tomographie. In: Nuklearmedizin 16, 1978, 57–61, Schattauer Verlag, Stuttgart-New York 1979Google Scholar
  10. (9).
    Rankowitz, S., Robertson, J.S., Higinbotham, W.A.: Positron scanner for Locating Brain Tumors. IRE Int. Conv. Rec. 10, No. 9, 49–56, 1962Google Scholar
  11. (10).
    Chesler, D.A.: Positron Tomography and Three-Dimensional Reconstruction Technique. In: Tomographic Imaging in Nuclear Medicine, 176–183. Society of Nuclear Medicine, Inc., New York 1973Google Scholar
  12. (11).
    Schmidlin, P.: Iterative Separation of Sections in Tomographic Scintigrams. Nuclear-Medizin XI, No. 1, 1–16, 1972Google Scholar
  13. (12).
    Vogel, R.A., Kirch, D., LeFree, M., Steele, P.: A New Method of Multiplanar Emission Tomography using a Seven Pinhole Collimator and an Anger Scintillation Camera. J. Nucl. Med. 19, 648–654, 1978Google Scholar
  14. (13).
    Koral, K.F., Rogers, W.L., Knoll, G.F.: Digital Tomographic Imaging with Time-Modulated Pseudorandom Coded Aperture and Anger Camera. J. Nucl. Med. 16, 402–413, 1975Google Scholar
  15. (14).
    Koral, K.F., Freitas, J.E., Rogers, W.L., Keyes, J.W.: Thyroid Scintigraphy with Time-Coded Aperture. J. Nucl. Med. 20, 345–349, 1979Google Scholar
  16. (15).
    Patton, J.A., Price, R.R., Brill, A.B., Pehl, R.: A Mosaic Intrinsic Germanium Radioisotope Scanning Device with Longitudinal section Scanning Capability. In: Medical Radionuclide Imaging, Vol. I, 159–169, IAEA 1977Google Scholar
  17. (16).
    Patton, J.A., Price, R.R., Rollo, F.D., Brill, A.B., Pehl, R.H.: Clinical and Experimental Results with a 9 Element High Purity Germanium Array. IEEE Trans. Nucl. Sci. Vol. NS-25, No. 1, 653–656, 1978CrossRefGoogle Scholar
  18. (17).
    Kuhl, D.E., Hoffman, E.J., Phelps, M.E., Ricci, A.: Design and Application of Mark IV Scanning System for Radionuclide Computed Tomography of the Brain. In: Medical Radionuclide Imaging, Vol. I, 309–320, IAEA 1977Google Scholar
  19. (18).
    Bowley, A.R., Taylor, C.G., Causer, D.A., et al.: A Radioisotope Scanner for Rectilinear Arc Transverse Section and Longitudinal Section Scanning: ASS — The Aberdeen Section Scanner. Br. J. Radiology 46, 262–271, 1973CrossRefGoogle Scholar
  20. (19).
    Stoddart, H.F., Stoddart, H.A.: A New Development in Single Gamma Transaxial Tomography. Union Carbide Focused Collimator Scanner. IEEE Trans Nucl. Sci., Vol. NS-26, No. 2, 2710–2712, 1979CrossRefGoogle Scholar
  21. (20).
    Keyes, Jr., J.W., Orlandea, N., Heetderks, W.J., Leonard, P.F., Rogers, W.L.: The Humongotron — A Scintillation-Camera Transaxial Tomograph. J. Nucl. Med. 18, 381–387, 1977Google Scholar
  22. (21).
    Murphy, P.H., Thompson, W.L., Moore. M.L., Burdine, J.A.: Radionuclide Computed Tomography of the Body Using Routine Radiopharmaceuticals. I. System Characterization. J. Nucl. Med. 20, 102–107, 1979Google Scholar
  23. (22).
    Jaszczak, R.J., Chang, L.T., Murphy, P.H.: Single Photon Emission Computed Tomography Using Multi-Sclice Fan Beam Collimators. IEEE Trans. Nucl. Sci., Vol. NS-26, No. 1, 610–618, 1979CrossRefGoogle Scholar
  24. (23).
    Williams, J.J., Knoll, G.F.: Initial Performance of SPRINT: A Single Photon System for Emission Tomography. IEEE Trans. Nucl. Sci., Vol. NS-26, No. 2, 2732–2735, 1979CrossRefGoogle Scholar
  25. (24).
    Price, R.R.: An Improved Coded-Aperture System for Emission Computed Tomography. IEEE Trans. Nucl. Sci., Vol. NS-26, No. 2, 2794–2796, 1979CrossRefGoogle Scholar
  26. (25).
    Rosenfeld, D., Macovski, A.: Time Modulated Apertures for Tomography in Nuclear Medicine. IEEE Trans. Nucl. Sci., Vol. NS-24, No. 1, 570–576, 1977CrossRefGoogle Scholar
  27. (26).
    Thompson, C.J., Yamamoto, Y.L., Meyer, E.: Positome II: A High Efficiency Positron Imaging Device for Dynamic Brain Studies. IEEE Trans. Nucl. Sci., Vol. NS-26, No. 1, 583–589, 1979CrossRefGoogle Scholar
  28. (27).
    Hoffman, E.J., Phelps, M.E., Mullani, N.A., Higgins, C.S., Ter-Pogossian, M.M.: Design and Performance Characteristics of a Whole Body Positron Transaxial Tomograph. J. Nucl. Med. 17, 493–502, 1976Google Scholar
  29. (28).
    Williams, C.W., Crabtree, M.C., Burgiss, S.G.: Design and Performance Characteristics of a Positron Emission Computed Axial Tomograph — ECAT II. IEEE Trans. Nucl. Sci., Vol. NS-26, No. 1, 619–627, 1979CrossRefGoogle Scholar
  30. (29).
    Ter-Pogossian, M.M., Mullani, N.A., Hood, J., Higgins, C.S., Currie, C.M.: A Multislice Positron Emission Computed Tomograph (PETT IV) Yielding Transverse and Longitudinal Images. Radiology 128, No. 2, 477–484, 1978Google Scholar
  31. (30).
    Ter-Pogossian, M.M., Mullani, N.A., Hood, J.T., Higgins, C.S., Ficke, D.C.: Design Considerations for a Positron Emission Transverse Tomograph (PETT V) for Imaging of the Brain. J. Comp. Ass. Tomogr. 2, 539–544, 1978CrossRefGoogle Scholar
  32. (31).
    Mullani, N.A., Ter-Pogossian, M.M., Higgins, C.S., Hood, J.T., Ficke, D.C.: Engineering Aspects of PETT V. IEEE Trans Nucl. Sci., Vol. NS-26, No. 2, 2703–2706, 1979CrossRefGoogle Scholar
  33. (32).
    Cho, Z.H., Cohen, M.B., Singh, M., et al.: Performance and Evaluation of the Circular Ring Transverse Axial Positron Camera (CRTAPC). IEEE Trans. Nucl. Sci., Vol. NS-24, No. 1, 532–543, 1977CrossRefGoogle Scholar
  34. (33).
    Bohm, C., Eriksson, L., Bergström, M., Litton, J., Sundman, R., Singh, M.: A Computer Assisted Ringdetector Positron Camera System for Reconstruction Tomography of the Brain. IEEE Trans. Nucl. Sci., Vol. NS-25, No. 1, 624–637, 1978CrossRefGoogle Scholar
  35. (34).
    Herman, G.T.: The Mathematics of Wobbling a Ring of Positron Annihilation Detectors. IEEE Trans. Nucl. Sci., Vol. NS-26, No. 2, 2756–2759, 1979CrossRefGoogle Scholar
  36. (35).
    Derenzo, S.E., Budinger, T.F., Cahoon, J.L., et al.: The Donner 280 — Crystal High Resolution Positron Tomograph. IEEE Trans. Nucl. Sci., Vol. NS-26, No. 2, 2790–2793, 1979CrossRefGoogle Scholar
  37. (36).
    Muehllehner, G., Atkins, F., Harper, P.V.: Positron Camera with Longitudinal and Transverse Tomographic Capabilities. In: Medical Radionuclide Imaging, Vol. I, 291–307, IAEA 1977Google Scholar
  38. (37).
    Brownell, G., Burnham, C., Correia, J., Chesler, D., Ackermann,R., Tavares, J.: Transverse Section Imaging with the MGH Positron Camera. IEEE Trans. Nucl. Sci., Vol. NS-26, No. 2, 2698–2702, 1979Google Scholar
  39. (38).
    Carroll, L.R.: Design and Performance Characteristics of a Production Model Positron Imaging System. IEEE Trans. Nucl. Sci., Vol. NS-25, No. 1, 606–614, 1978CrossRefGoogle Scholar
  40. (39).
    Budinger, T.F., Derenzo, S.E., Greenberg, W.L., Gullberg, G.T., Huesman, R.H.: Quantitative Potentials of Dynamic Emission Computed Tomography. J. Nucl. Med. 19, 309–315, 1978Google Scholar
  41. (40).
    Vogel, R.A., Kirch, D.L., et al.: Thallium-201 Myocardial Perfusion Scintigraphy: Results of Standard and Multi-Pinhole Tomographic Techniques. Americ. J. Cardiology 43, 787–793, 1979CrossRefGoogle Scholar
  42. (41).
    Phelps, M.E., Hoffman, E.J., Mullani, N.A., Ter-Pogossian, M.M.: Application of Annihilation Coincidence Detection to Transaxial Reconstruction Tomography. J. Nucl. Med. 16, 210–224, 1975Google Scholar
  43. (42).
    Phelps, M.E., Hoffman, E.J., Huang, S., Kuhl, D.E.:Design Considerations in Positron Computed Tomography. IEEE Trans. Nucl. Sci., Vol. NS-26, No. 2, 2746–2751, 1979CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • K. Jordan
    • 1
  1. 1.Abteilung für Nuklearmesstechnik und StrahlenschutzMedizinischen Hochschule HannoverHannover 61Deutschland

Personalised recommendations