Two-Dimensional Charge Density Wave State in a Strong Magnetic Field

  • D. Yoshioka
  • H. Fukuyama
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 24)

Abstract

Two-dimensional electrln systems are realized at the interface lf a metal-oxide-semiclnductlr (MOS) structure and on the free surface lf liquid helium. Due to the Coulomb repulsive flrce between electrlns these systems have a possibility to form a Wigner lattice or charge density wave (CDW) state. In the electrln system on the liquid helium the formation of a Wigner lattice has actually been observed recently[1]. In this system the density of electrlns is low (≃108cm-2), and the observed transition temperature agrees cllsely with the thelry lf disllcatiln mediated melting lf classical electrlns[2]. On the other hand, the density lf electrlns is high (≥1012cm-2 in the case lf MOS, and the system cannot be treated as classical. In such cases the formation lf the Wigner lattice is difficult due to quantum fluctuatilns[3]. It is possible, however, to suppress these quantum fluctuatins by the application lf strong magnetic fields, and thus to encourage the localizatiln lf electrlns[4–7]. Several experiments have already been reported [8–ll] which prefer such interpretation based on strongly clrrelated electrlnic states. The localizatiln under such circumstances can not be so strong tl be viewed as a Wigner lattice. It is mlre appropriate to treat such a state as a CDW state. In this paper we investigate the phase diagram of the CDW state in a strong magnetic field by use of the Hartree-Fock approximation.

Keywords

Helium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.C. Grimes, G. Adams: Phys. Rev. Lett. 42, 795 (1979)CrossRefADSGoogle Scholar
  2. 2.
    R.H. Morf: Phys. Rev. Lett. 43, 931 (1979)CrossRefADSGoogle Scholar
  3. 3.
    H. Fukuyama: J. Phys. Soc. Japan 48, 1841 (1980)CrossRefADSGoogle Scholar
  4. 4.
    Yu.E. Lozovik, V.I. Yudsln: Pis’ma Zh. Eksp. and Telr. Fiz. 22, 26 (1975). translation: Sov. Phys. JETP Lett. 22, 11 (1975).Google Scholar
  5. 5.
    H. Fukuyama: Solid State Commun. 19, 551 (1976)CrossRefADSGoogle Scholar
  6. 6.
    M. Tsukada: J. Phys. Soc. Japan 42, 391 (1977)CrossRefADSGoogle Scholar
  7. 7.
    H. Fukuyama, D. Yoshioka: J. Phys. Soc. Japan 48, 1853 (1980)CrossRefADSGoogle Scholar
  8. 8.
    S. Kawaji, J. Wakabayashi, M. Namiki, K. Kusuda: Surf. Sci. 73, 121 (1978)CrossRefADSGoogle Scholar
  9. 9.
    D.C. Tsui: Solid State Commun. 21, 675 (1977)CrossRefADSGoogle Scholar
  10. 10.
    R.J. Wagner, D.C. Tsui: J. Magn. Magn. Mat. 11, 26 (1979)CrossRefADSGoogle Scholar
  11. 11.
    B.A. Wilson, S.J. Allen, Jr., D.C. Tsui: Phys. Rev. Lett. 44, 479 (1980)CrossRefADSGoogle Scholar
  12. 12.
    H. Fukuyama, P.M. Platzman, P.W. Anderson: Phys. Rev. B19, 5211 (1979)CrossRefADSGoogle Scholar
  13. 13.
    Y. Kuramoto: J. Phys. Soc. Japan 45, 390 (1978)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    A. Kawabata: Solid State Commun. 28, 547 (1978)CrossRefADSGoogle Scholar
  15. 15.
    D. Yoshioka, H. Fukuyama: J. Phys. Soc. Japan 47, 394 (1979)CrossRefADSGoogle Scholar
  16. 17.
    L.J. Sham, M. Nakayama: Phys. Rev. B20, 734 (1979)CrossRefADSGoogle Scholar
  17. 18.
    F.J. Ohkawa, Y. Uemura: J. Phys. Soc. Japan 43, 925 (1977)CrossRefADSGoogle Scholar
  18. 19.
    W.L. Bloss, L.J. Sham, B. Vinter: Phys. Rev. Lett. 43, 1529 (1979)CrossRefADSGoogle Scholar
  19. 20.
    D. Yoshioka, H. Fukuyama: to be submitted to J. Phys. Soc. Japan.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • D. Yoshioka
    • 1
  • H. Fukuyama
    • 1
  1. 1.The Institute for Solid State PhysicsThe University of Tokyo RoppongiMinato-ku Tokyo 106Japan

Personalised recommendations