One-Dimensional Superionic Conductors

  • H. U. Beyeler
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 23)


Superionic conductors are solids with exceptionally high ionic conductivities. Whereas “usual” ionic compounds show ionic conductivities of the order of 10-10 to 10-15 (Ωcm)-1 an increasing number of compounds is now known with conductivities of the order of 10-2 to 1 (Ωcm)-1. These values differ from electronic conductivities in metals essentially by a factor given by the mass ratio between ions and electrons.


Superionic Conductor Effective Barrier Height Linear Channel Solid State Lonics Framework Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “Superionic Conductors”. ed. by G.D. Mahan and W.L. Roth (Plenum Press; New York, 1976)Google Scholar
  2. 2.
    “Solid Electrolytes”, ed. by S. Geller, Topics in Applied Physics, Vol.21 (Springer, Berlin, Heidelberg, New York 1977)Google Scholar
  3. 3.
    “Physics of Superionic Conductors”, ed. by M.B. Salaraon, Topics in Current Physics, Vol.15 (Springer, Berlin, Heidelberg, New York 1979)Google Scholar
  4. 4.
    “Fast Transport in Solids”, ed. by P. Vashishta, J.N. Mundy and G.K. Shenoy (North Holland New York, 1979)Google Scholar
  5. 5.
    U. v. Alpen, E. Schönherr, H. Schulz and G.H. Talat: Electrochim Acta 22, 805 (1977)CrossRefGoogle Scholar
  6. 6.
    A. Byström and A.M. Byström: Acta Crystallogr. 3, 146 (1950)CrossRefGoogle Scholar
  7. 7.
    J. Singer, H.E. Kautz, W.L. Fielder and J.S. Fordyce in: “Fast Ion Transport in Solids”, ed. by W. van Gool (North Holland Amsterdam, 1973), p. 653Google Scholar
  8. 8.
    H.U. Beyeler: Phys. Rev. Lett. 37, 1557 (1976)CrossRefADSGoogle Scholar
  9. 9.
    H.U. Beyeler, L. Pietronero, S. Strässler and H.J. Wiesmann: Phys. Rev. Lett. 38, 1532 (1977)CrossRefADSGoogle Scholar
  10. 10.
    H.U. Beyeler and C. Schüler: Solid State Ionics 1, 77 (1980)CrossRefGoogle Scholar
  11. 11.
    H.U. Beyeler, L. Pietronero and S. Strässler: to appear in Phys. Rev.Google Scholar
  12. 12.
    Chen Li-chuan, A. Rabenau and W. Weppner: Appl. Phys. 17, 233 (1978)CrossRefADSGoogle Scholar
  13. 13.
    J.B. Boyce and J.C. Mikkelsen, Jr.: Solid State Commun. 31, 741 (1979)CrossRefADSGoogle Scholar
  14. 14.
    G.V. Chandrasekhar, A. Bednowitz and S.J. La Placa in Ref. 4, p. 447Google Scholar
  15. 15.
    H.U. Beyeler, P.Brüesch, L. Pietronero, W.R. Schneider, S. Strässler and H.R. Zeller: “Status and Dynamics of Lattice Gas Models”, in Ref.3, p.77Google Scholar
  16. 16.
    L. Pietronero, W. R. Schneider and S. Strässler: to be publishedGoogle Scholar
  17. 17.
    H. v. Löhneysen, Mui-Xieng Ding, W. Arnold, H.U. Beyeler, L. Pietronero and S. Strässler: to be publishedGoogle Scholar
  18. 18.
    S.K. Khanna, G. Grüner, R. Orbach and H.U. Beyeler: to be publishedGoogle Scholar
  19. 19.
    J. Bernasconi, S. Alexander and R. Orbach: Phys. Rev. Lett. 41, 185 (1978)CrossRefADSGoogle Scholar
  20. 20.
    J. Bernasconi, H.U. Beyeler, S. Strässler and S. Alexander: Phys. Rev. Lett. 42, 819 (1979)CrossRefADSGoogle Scholar
  21. 21.
    J. Bernasconi, W.R. Schneider and W. Wyss: Z. Physik B37, 175 (1980)ADSGoogle Scholar
  22. 22.
    S. Alexander, J. Bernasconi, W.R. Schneider and R. Orbach: “Excitation Dynamics in Random One-Dimensional Systems”, in this volume, p.277Google Scholar
  23. 23.
    P.N. Richards and R.L. Renken: Phys. Rev. B21, 3740 (1980)ADSMathSciNetGoogle Scholar
  24. 23a.
    J. Bernasconi and H.U. Beyeler: Phys. Rev. B21, 3745 (1980)ADSGoogle Scholar
  25. 24.
    A.K. Jonscher: Nature 267, 673 (1977)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • H. U. Beyeler
    • 1
  1. 1.Brown Boveri Research CenterBaden-DättwilSwitzerland

Personalised recommendations