Advertisement

Lattice Dynamics and Spectral Properties of Disordered Chains

Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 23)

Abstract

Some rigorous treatments on special frequencies and localization of eigen-states in one-dimensional systems are outlined. Special frequencies are understood as generalized spectral gaps which are predicted by the general Saxon-Hutner-type theorem. Localization of eigenstates is understood by the exponential growth property of particular solution. Furstenberg’s convergent theorem is generalized for this purpose.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Dean: Proc. R. Soc. London A 254, 507 (1960)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    N.F. Mott, W.D. Twose: Adv. Phys. 10, 107 (1961)CrossRefADSGoogle Scholar
  3. 3.
    J. Honri: Spectral Properties of Disordered Chaines and Lattices (Pergamon, New York 1968)Google Scholar
  4. 4.
    J.M. Ziman: Models of Disorder (Cambridge Univ. Press, Cambridge 1979)Google Scholar
  5. 5.
    K. Ishii: Prog. Theor. Phys. Suppl. 53, 77 (1973)CrossRefADSGoogle Scholar
  6. 6.
    F. Yonezawa, K. Morigaki: Prog. Theor. Phys. Suppl. 53, 1 (1973)CrossRefADSGoogle Scholar
  7. 7.
    R.J. Elliott, J.A. Krumhansl, P.L. Leath: Rev. Mod. Phys. 46, 465 (1974)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    A.J. Epstein, J.S. Miller: Sci. Am. 241, 48 (1979)CrossRefADSGoogle Scholar
  9. 9.
    R.J. Birgeneau, G. Shirance: Phys. Today (1978), 32Google Scholar
  10. 10.
    H. Matsuda, K. Okada, T. Takase, T. Yamamoto: J. Chem. Phys. 41, 1527 (1964)CrossRefADSGoogle Scholar
  11. 11.
    H. Matsuda: Prog. Theor. Phys. 31, 161 (1964)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    J. Hori: Prog. Theor. Phys. Suppl. 36, 3 (1966)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    J.E. Gubernatis, P.L. Taylor: J. Phys. C6, 1889 (1973)ADSGoogle Scholar
  14. 14.
    P.W. Anderson: Phys. Rev. 109, 1492 (1958)CrossRefADSGoogle Scholar
  15. 15.
    R.E. Borland: Proc. R. Soc. London A 274, 529 (1963)CrossRefMATHADSGoogle Scholar
  16. 16.
    H. Matsuda, K. Ishii: Prog. Theor. Phys. Suppl. 45, 56 (1970)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    H. Furstenberg: Trans. Am. Math. Soc. 108, 377 (1963)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    F. Dyson: Phys. Rev. 92, 1331 (1953)CrossRefMATHADSMathSciNetGoogle Scholar
  19. 19.
    H. Schmidt: Phys. Rev. 105, 425 (1957)CrossRefMATHADSMathSciNetGoogle Scholar
  20. 20.
    M. Goda: Prog. Theor. Phys. 62, 608 (1979)CrossRefADSGoogle Scholar
  21. 21.
    M. Goda: submitted to Prog. Theor. Phys. Suppl.Google Scholar
  22. 22.
    M. Goda: this conference.Google Scholar
  23. 23.
    R. Abou-Chacra, P.W. Anderson, D.J. Thouless: J. Phys. C6, 1734 (1973)Google Scholar
  24. 24.
    E. Abrahams, P.W. Anderson, D.C. Lecciardello, T.Y. Ramakrishnam: Phys. Rev. Lett. 42, 673 (1979)CrossRefADSGoogle Scholar
  25. 25.
    I.Ya. Golidsheid, S.A. Molchanov, S.A. Pastur: Funct. Anal. Appl. 11, 1 (1977)CrossRefGoogle Scholar
  26. 26.
    S.A. Molchanov: Izv. AHCCCP Ser. Mat. 42, 70 (1978)MATHGoogle Scholar
  27. 27.
    D.C. Herbert, R. Jones: J. Phys. C4, 1145 (1971)ADSGoogle Scholar
  28. 28.
    D.J. Thouless: J. Phys. C5, 77 (1972)ADSGoogle Scholar
  29. 29.
    B.I. Halperin: Adv. Chem. Phys. 13, 123 (1967)CrossRefGoogle Scholar
  30. 30.
    J.T. Devreese, R.P. Evrard, Y.E. van Doren: Highly Conducting One-Dimensional Solids (Plenum, New York 1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • M. Goda
    • 1
  1. 1.Faculty of EngineeringNiigata UniversityNiigataJapan

Personalised recommendations