Skip to main content

How to Reduce Practically Any Problem to One Dimension

  • Conference paper
Physics in One Dimension

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 23))

  • 358 Accesses

Abstract

A large number of interesting problems of theoretical physics are exactly soluble in one spatial dimension (1D). These include studies in statistical mechanics of interacting or of random systems (solved by diagonalization of a transfer matrix), many-body problems (solved by a Bethe ansatz), nonlinear dynamics (leading to solitons), magnetism (reducible by the Jordan-Wigner transformation to a many-fermion problem), etc. Some of these studies apply to physically interesting systems such as polymers, magnetic molecules, and energy transport in long chain molecules, yet others might appear to be of academic interest only. Surprisingly, even some far-fetched work in 1D may ultimately find important physical applications in three spatial dimensions. In this paper I shall endeavor to demonstrate what sorts of problems, arising in arbitrary dimensions, can be successfully reduced to 1D where they can be analyzed and ultimately solved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Footnotes and References

  1. C. Lanczos, J. Res. N.B.S. 45, 255 (1950). See also

    MathSciNet  Google Scholar 

  2. G. Strang, “Linear Algebra and its Applications”, Academic, New York, 1975, pp. 276 et seq.

    Google Scholar 

  3. R. Haydock, J. Phys. A7, 2120 (1974)

    ADS  MathSciNet  Google Scholar 

  4. R. Haydock, J. Phys. ibid A10, 461 (1977)

    ADS  Google Scholar 

  5. R. Haydock, V. Heine and M.J. Kelly, J. Phys. C5, 2845 (1972) and

    ADS  Google Scholar 

  6. R. Haydock, V. Heine and M.J. Kelly, J. Phys. C8, 2591 (1975).

    ADS  Google Scholar 

  7. J. Stein and U. Krey, J. Magn. and Magn. Mat. 6, 196 (1977)

    Article  ADS  Google Scholar 

  8. J. Stein and U. Krey, Solid State Comm. 27, 797 (1978)

    Article  ADS  Google Scholar 

  9. J. Stein and U. Krey, Solid State Comm. 27, ibid., 1405 (1978)

    Article  ADS  Google Scholar 

  10. J. Stein and U. Krey, Z. Phys. B34, 287 (1979); also

    ADS  Google Scholar 

  11. J. Stein and U. Krey, R. Haydock, Phil. Mag. B37, 97 (1978).

    Google Scholar 

  12. D.C. Mattis and R. Raghavan, Phys. Lett. 75A, 313 (1980).

    ADS  Google Scholar 

  13. R.F. Hausman Jr. and C.F. Bender, in “Methods of Electronic Structure Theory”, H. F. Schaefer III, Ed., Plenum, New York 1977, p. 319.

    Google Scholar 

  14. K.S. Dy, Shi-Yu Wu and T. Spratlin, Phys. Rev. B20, 4237 (1979).

    ADS  Google Scholar 

  15. See various chapters in E.H. Lieb and D.C. Mattis, “Mathematical Physics in One Dimension”, Academic, New York, 1965; or

    Google Scholar 

  16. P.J. Dean, Rev. Mod. Phys. 44, 127 (1972).

    Article  ADS  Google Scholar 

  17. M.L. Mehta, “Random Matrices”, Academic, New York, 1967.

    MATH  Google Scholar 

  18. P.A. Wolff, Phys. Rev. 124, 1030 (1961).

    Article  ADS  Google Scholar 

  19. D.C. Mattis, Ann. of Phys. (N.Y.) 89, 45 (1975).

    Article  ADS  Google Scholar 

  20. D.C. Mattis, Phys. Rev. Lett. 19, 1478 (1967).

    Article  ADS  Google Scholar 

  21. J. Moser, Am. Scientist 67, 1689 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mattis, D.C. (1981). How to Reduce Practically Any Problem to One Dimension. In: Bernasconi, J., Schneider, T. (eds) Physics in One Dimension. Springer Series in Solid-State Sciences, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81592-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81592-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81594-2

  • Online ISBN: 978-3-642-81592-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics