Advertisement

Parameter Sensitivity of Nonlinear Structures Concerning Stability Limit

  • F. G. Rammerstorfer
  • D. F. Fischer
Conference paper

Summary

The stability of nonlinear structures is considered, especially having in view the parameter sensitivity of the stability limit load. It is shown that under special circumstances, for which criterions are derived, nonlinear structures behave with a sudden, i.e. non-continuous, change of the limit load if a certain system parameter is varied. Such phenomena belong to the field of the catastrophe theory which allows their classification and useful documentation.

Keywords

Load Level Stability Limit Control Surface Limit Load Nonlinear Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bathe, K.-J.; Ramm, E; Wilson, E.L: Finite Element Formulations for Large Deformation Analysis. Int.J.Numer.Meth.Engng. 9 (1975), 353–386.MATHCrossRefGoogle Scholar
  2. 2.
    Bathe, K.-J.; Bolourchi, S.; Ramaswamy, S.; Snyder, M.D.: Some Carr putational Capabilities for Nonlinear Finite Element Analysis. Nucl. Eng.Design 46 (1978), 429–455.CrossRefGoogle Scholar
  3. 3.
    Matthies, H.; Strang, G.: The Solution of Nonlinear Finite Element Equations. Int.J.Numer.Meth.Engng. 14 (1979), 1613–1626.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Ramm, E.: Geometrisch nichtlineare Elastostatik und finite Elemente. Habilitationsschrift. Univ. Stuttgart. 1975.Google Scholar
  5. 5.
    Gallagher, R.H.; Mau, S.: A Method of Limit Point Calculation in Finite Element Structural Analysis, NASA CR-2115. 1972.Google Scholar
  6. 6.
    Brendel, B.: Geanetrisch nichtlineare Elastostabilität. Bericht Nr. 79–1, Inst. f. Baustatik, Univ. Stuttgart. 1979.Google Scholar
  7. 7.
    Brendel, B.; Rahm, E.; Fischer, D.F.; Ranmlerstorfer, F.G.: Linear and Nonlinear Stability Analysis of Thin Cylindrical Shells Under Wind Loads. To be published in: J.Struct.Mech. 9 (1981).Google Scholar
  8. 8.
    Bergan, P.G.; Horrigmoe, G.; Krâkeland, B.; SOreide, T.H.: Solution Techniques for Non-Linear Finite Element Prablens. Int.J.Numer. Meth.Engng. 12 (1978), 1677–1696.MATHCrossRefGoogle Scholar
  9. 9.
    Bergan, P.G.: Solution Algorithms for Nonlinear Structural Problems. Proc.Int.Conf.Engng.Appl. FEM, Hdvik, 1979.Google Scholar
  10. 10.
    Bergan, P.G.; Roland, I.; SOreide, T.H.: Use of the Current Stiffness Parameter in Solution of Nonlinear Problems. Energy Methods in Finite Element Analysis. R. Glowinski, E.Y. Rodin, O.C. Zienkiewicz (editors). John Wiley and Sons, Chichester - New York - Brisbane - Toronto: 1979Google Scholar
  11. 11.
    Rammerstorfer, F.G.; Fischer D.F.: Nonlinear Elastic-Plastic Stability and Contact Problems Concerning the Straightening of a Wave-Like Deformed Strip Plate. To appear in Proc.lst Int.Conf.Num. Meth. for Non-Linear Problems. Swansea: 1980.Google Scholar
  12. 12.
    Brendel, B.; Häfner, L.; Ramm, E.; Sättele, J.M.: Programmdokumentation - Programmsystem NISA. Univ. Stuttgart, Inst. f. Baustatik. 1977Google Scholar
  13. 13.
    Than, R.: Topological Models in Biology. Topology 8, (1969), 313–335.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Than, R.: Structural Stability and Morphogenesis. New York: Benjamin 1975.Google Scholar
  15. 15.
    Zeeman, E.C.: Catastrophe Theory. Scientific American, April 1976, 65–83.Google Scholar
  16. 16.
    Troger, H.: Zur Einteilung von Sprungeffekten in mechanischen Systemen. ZNAM 54 (1974), T177 - T179.Google Scholar
  17. 17.
    Trager, H.: Ein Beitrag zum Durchschlagen einfacher Strukturen. Acta Mechanica 23 (1975), 179–191.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • F. G. Rammerstorfer
    • 1
  • D. F. Fischer
    • 1
  1. 1.Voest-Alpine AGLinzAustria

Personalised recommendations