Approximate Solution of Nonlinear Problems in Incompressible Finite Elasticity

  • R. Glowinski
  • P. Le Tallec
  • V. Ruas de Barros

Abstract

The main goal of this paper is to describe some numerical methods for solving nonlinear variational problems in incompressible finite elasticity.

Keywords

Expense Nite Aires Cylin Incompressibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lions P.L., Mercier B., Splitting algorithms for the sum of two nonlinear operators, SIAM J. Num. Anal., 16, (1979), pp. 964–979.MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Gabay D., Méthodes Numériques pour l’Optimisation Non Linéaire, Thèse d’Etat, Université Pierre et Marie Curie, Paris, November 1979.Google Scholar
  3. 3.
    Glowinski R., Lions J.L., Trémolières R., Analyse numérique des Inéquations Variationnelles, Vol. 1, Dunod-Bordas, Paris, 1976.Google Scholar
  4. 4.
    Glowinski R., Lions J.L., Tremoliéres R., Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam (to appear).Google Scholar
  5. 5.
    Fortin M., Glowinski R., Résolution numérique de problèmes aux limites par des méthodes de Lagrangiens augmentés (in preparation).Google Scholar
  6. 6.
    Glowinski R., Numerical Methods for Nonlinear Variational Problems, Lecture Notes, Tata Institute, Bombay and Springer-Verlag, Berlin, 1980.Google Scholar
  7. 7.
    Cea J., Glowinski R., Sur des méthodes d’optimisation par relaxation, Revue Francaise Automatique, Informat., Recherche Opérationnelle, R-3, (1973), pp. 5–32.Google Scholar
  8. 8.
    Gabay D., Mercier B., A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comp. Math. Appl., Vol. 2, N 1 (1976), pp. 17–40.MATHCrossRefGoogle Scholar
  9. 9.
    Douglas J., Rachford H.H., On the numerical solution of heat conduction problems in two or three space variables Trans. Amer. Math. Soc., 82 (1956), pp. 421–439.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Peaceman D.H., Rachford H.H., The numerical solution of parabolic and elliptic differential equations, SIAM J. Appl. Math., 3 (1955), pp. 24–41.MathSciNetGoogle Scholar
  11. 11.
    Bourgat J.F., Dumay J.M., Glowinski R., Large displacement calculations of flexible pipelines by finite element and nonlinear programming method, SIAM J. Sc. Stat. Comp., 1 (1980), pp. 34–81.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Glowinski R., Marrocco A., Sur l’approximation par éléments finis d’ordre un et la résolution par pénalisation dualité d’une classe de problèmes de Dirichlet non lineaire, Compt. Rend. Acad. Sc. Paris, t. 278A (1974), pp. 1649–1652.MathSciNetMATHGoogle Scholar
  13. 13.
    Glowinski R., Marrocco A., On the solution of a class of nonlinear Dirichlet problems by a penalty-duality method and finite elements of order one, in Optimization Technique: IFIP Technical Conference, G.I. Marchouk, ed. Lecture Notes in Comp. Sciences, Vol. 27, Springer-Verlag, Berlin, 1975, pp. 327–333.Google Scholar
  14. 14.
    Glowinski R., Marrocco A., Sur l’approximation par éléments finis d’ordre un et la résolution par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires, Revue Francaise d’Autom. Inf. Rech. Opérationnelle, R-2 (1975), pp. 41–76.Google Scholar
  15. 15.
    Poljak B.T., On the Bertsekas method for minimization of composite functions, in International Symposium on Systems Optimization and Analysis, A. Bensoussan and J.L. Lions eds., Lecture Notes in Control and Information Sciences, Vol. 14, Springer-Verlag, Berlin, 1979, pp. 179–186.Google Scholar
  16. 16.
    Glowinski R., Marrocco A., Sur l’approximation par éléments finis d’ordre un et la résolution par pénalisation dualité d’une classe de problèmes de Dirichlet non linéaires. Rapport Laboria 115, 1975 (extended version of Ref. 14).Google Scholar
  17. 17.
    Glowinski R., Marrocco A., Numerical solution of two-dimensional magneto-static problems by augmented lagrangian methods, Comp. Meth. Appl. Mech. Eng., 12 (1977), pp. 33–46.MATHCrossRefGoogle Scholar
  18. 18.
    Marrocco A., Expériences numériques sur des problèmes non linéaires résolus par éléments finis et lagrangien augmenté, Rapport Laboria 309, 1978.Google Scholar
  19. 19.
    Mercier B., Sur la Théorie et l’Analysé Numérique de problèmes de plasticité, Thèse d’Etat, Université Pierre et Marie Curie, Paris, 1977.Google Scholar
  20. 20.
    Chan T., Glowinski R., Finite element approximation and iterative solution of a class of mildly nonlinear elliptic Compupter Sc. Department, equations, STAN-CS-78–674, Stanford University, 1978.Google Scholar
  21. 21.
    Begis D., Analyse Numérique de l’écoulement d’un fluide une méthode de lagrangien visco-plastique de Bingham par augmenté, Rapport Laboria 355, 1979.Google Scholar
  22. 22.
    Bourgat J.F., Glowinski R., Le Tallec P., Decomposition of Variational Problems and Applications in Finite Elasticity, in Partial Differential Equations in Engineering and Applied Science, R.L. Sternberg, ed., Marcel Dekker, New-York, 1980, pp. 445–480.Google Scholar
  23. 23.
    Chan T., Glowinski R., Numerical methods for a class of mildly nonlinear elliptic equations, Atos do Decime Primeiro Coloquio Brasileiro de Matematica, Vol. I, IMPA, Rio de Janeiro, 1978, pp. 279–318.Google Scholar
  24. 24.
    Le Tallec P., Numerical Analysis of Equilibrium Problems in Incompressible Nonlinear Elasticity, Ph. D. dissertation, The University of Texas at Austin, 1980.Google Scholar
  25. 25.
    Glowinski R., Le Tallec P., Numerical solution of problems in incompressible finite elasticity by augmented lagrangianmethods (I) Two-dimensional and axisymmetric problems, submitted to SIAM J. Appl. Math.Google Scholar
  26. 26.
    Le Tallec P., Oden J.T., Existence and characterization of hydrostatic pressure in finite deformation of incom-r pressible elastic bodies, TICOM Report, University of Texas at Austin, 1979.Google Scholar
  27. 27.
    Ball J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., 63 (1977), pp. 337–403.MATHCrossRefGoogle Scholar
  28. 28.
    Glowinski R., Le Tallec P., Numerical solution of problems in incompressible finite elasticity by augmented lagrangian methods (II) Three-dimensional problems (to appear).Google Scholar
  29. 29.
    Glowinski R., Le Tallec P., Une méthode numérique en élasticité non linéaire incompressible, Comptes Rendus Acad. Sc. Paris, t. 290B (1980), pp. 23–26.Google Scholar
  30. 30.
    Ruas V., A class of axymmetric simplicial finite element methods for solving finite incompressible elasticity problems, to appear in Comp. Meth. Appl. Mech. Eng.Google Scholar
  31. 31.
    Ruas V., Sur l’application de quelques méthodes d’éléments finis a la résolution d’un problème d’élasticity incompressible non linéaire, INRIA, Rapport de Recherche 24, May 1980.Google Scholar
  32. 32.
    Chadwick P., Haddon E.W., Inflation-Extension and Eversion of a Tube of Incompressible Isotropic Elastic Material, J. Inst. Maths. Applics., 10, (1972), pp. 258–278.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • R. Glowinski
    • 1
  • P. Le Tallec
    • 2
  • V. Ruas de Barros
    • 3
  1. 1.Université Paris VIFrance
  2. 2.University of TexasAustinUSA
  3. 3.INRIA, Le ChesnayFrance

Personalised recommendations