Numerical Methods in Elasto-Plasticity — A Comparative Study

  • A. Samuelsson
  • M. Fröier
Conference paper


Problems involving nonviscid, quasistatic, small strain elastoplasticity are discussed in different aspects: the role of an objective rate of stress, the choice of variational formulation, the choice of time step procedure.


Variational Inequality Small Strain Tangent Modulus Mixed Finite Element Objective Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duvaut, G.; Lions, S.L.: Les inéquations en Mécanique et en Physique, Dunod, Paris, 1973Google Scholar
  2. 2.
    Johnson, C.: Existence theorems for plasticity problems, J. de Math. Pures et Appl., Vol. 55, 1976, pp. 431–444MATHGoogle Scholar
  3. 3.
    Yamada, Y.; Yoshimura, N.; Sakurai, T.: Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method, Int. J. Mech. Sci., Vol. 10, 1968, pp. 343–354MATHCrossRefGoogle Scholar
  4. 4.
    Marcal, P.V.; King, L.P.: Elasto-plastic analysis of two-dimensional stress systems by the finite element method, Int. J. Mech. Sci., Vol. 9, 1967, pp. 143–155CrossRefGoogle Scholar
  5. 5.
    Zienkiewicz, O.C.; Valliappan, S.; King, I.P.: Elastoplastic solution of engineering problems; ‘inital stress’, finite element approach, Int. J. num. Meth. Engng, Vol. 1, 1969, pp. 75–100MATHCrossRefGoogle Scholar
  6. 6.
    Johnsson, C.: A mixed finite element method for plasticity with hardening, SIAM J. Numer. Anal., Vol. 14, 1977, pp. 575–584CrossRefGoogle Scholar
  7. 7.
    Fröier, M.; Samuelsson, A.: Variational inequalities in plasticity, recent developments, Finite Elements in Non-linear Mechanics, Tapir, Trondheim, 1978, pp. 63–85Google Scholar
  8. 8.
    Samuelsson, A; Fröier, M.: Finite plasticity — A variational inequality approach. The Matematics of Finite Elements and Applications III, Academic Press, London, 1979, pp. 105–115Google Scholar
  9. 9.
    Maier, G.: A minimum principle for incremental elastoplasticity with non-associated flow-laws, J. Mech. Phys. Solids, Vol. 18, 1970, pp 319–330ADSMATHCrossRefGoogle Scholar
  10. 10.
    Hill, R.: On the classical constitutive relations for elastic-plastic solids, Recent Progress in Applied Mechanics, the Folke Odqvist Volume, Almqvist & Wiksell, Stockholm, 1967, pp. 241–249Google Scholar
  11. 11.
    Lee, E.H.: Elastic-plastic deformation at finite strains, J. Appl. Mechs, Vol. 36, 1969, pp. 1–6ADSMATHCrossRefGoogle Scholar
  12. 12.
    Hutchinson, J.W.: Finite strain analysis of elastic-plastic solids and structures, Numerical Solution of Nonlinear Structural Problems, ASME, AMD, Vol. 6, 1973, pp. 17–29Google Scholar
  13. 13.
    Bäcklund, J.; Wennerström, H.; Axelsson, K.: PIFEM, Computer program for elastic-plastic structures (in Swedish), Skrift LiTH-IKP-S-067, Dept. of Mech. Eng., University of Technology, Linköping, Sweden, 1976Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • A. Samuelsson
    • 1
  • M. Fröier
    • 1
  1. 1.Chalmers University of TechnologyGöteborgSweden

Personalised recommendations