Skip to main content

Physical and Phenomenological Model with Non-Linearity in Ductile Fracture and Fatigue Crack Growth

  • Conference paper

Summary

This paper concern the ductile fracture with respect to large scale non-linear plasticity, and concern the fatigue crack growth at not high temperatures with respect to small scale non-linear plasticity.

Concerning the ductile fracture, a physic-phenomenological model has been presented both for slipping-off type and for separation type, respectively. For separation type fracture, the piling-up of dislocations problems have been studied by computer simulation based on dislocation group dynamics.

Concerning the fatigue crack growth, a physicophenomenological model has been presented. The crack growth rate formula based on this model is in common with any of physical models, such as, nucleation model, dislocation group dynamics model or vacancy condensation model as far as stress intensity dependence is concerned.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yokobori, T.: Criteria for Nearly Brittle Fracture. Int. J. Fract. Mech. 4 (1968) 179.

    Google Scholar 

  2. Yokobori, T.; Maekawa, I.; Yokobori, A.T., Jr.; Sakata, H.: Constitutive Equations and Global Criteria for Ductile Fracture. Proc. IUTAM Symposium on Three-dimensional Constitutive Relationships and Ductile Fracture, June 2–5 (19 80) Dourdan. (To be published)

    Google Scholar 

  3. Yokobori, T.: A Kinetic Approach to Fatigue Crack Propagation, Physics of Strength and Plasticity, A.S. Argon, ed., MIT Press (1969) 327–338.

    Google Scholar 

  4. Yokobori, T.; Ichikawa, M.: Effect of Elastic Plastic Stress, Distribution near the Crack on the Nucleation Theory of Fatigue Crack Propagation. Rep. Res. Inst. Strength and Fracture of Materials, Tohoku Univ. Sendair Japan 4, (1968) 45–53.

    Google Scholar 

  5. Yokobori, T.; Konosu, S.; Yokobori, A.T., Jr.: Micro and Macro Fracture Mechanics Approach to Brittle Fracture and Fatigue Crack Growth. Proc. 4th Int. Conf. Fracture 1 (1977) 665–682.

    Google Scholar 

  6. Yokobori, T.; Ichikawa, M.: A Kinetic Theory of Fatigue Crack Propagation Based on Vacancy Condensation Mechanism. Rep. Res. Inst. Strength and Fracture of Materials, Tohoku Univ. Sendai, Japan 6 (1970) 75–86.

    Google Scholar 

  7. Yokobori, T.: Zairyo Kyodogaku, 2nd edition, (in Japanese), Iwanami Shoten (1974) 139; Russian edition, Naukova Dumka, Kiev (19 7 8 ) 135.

    Google Scholar 

  8. Ludwik, P.; Scheu, R.: Ueber Kerbwirkungen bei FluSeisen. Stahl und Eisen 43 (1923) 999–1001.

    Google Scholar 

  9. Cottrell, A.H.: Fracture Proc. Roy. Soc. London A 276 (1963) 1–18.

    Article  ADS  Google Scholar 

  10. Yokobori, T.; Yokobori, A.T., Jr.; Kamei, A.: Computer Simulation of Dislocation from a Stressed Source. Phil. Mag. 30 (1974) 367–378.

    Article  ADS  Google Scholar 

  11. Yokobori, A.T., Jr.; Yokobori, T.; Kamei, A.: Generalization of Computer Simulation of Dislocation Emission under Constant Rate of Stress Application. J. Appl. Phys. 46 (1975) 3720–3724.

    Article  ADS  Google Scholar 

  12. Yokobori, A.T., Jr.; Kawasaki, T.; Yokobori, T.: Computer Simulation of Dislocation Groups Dynamics Under Applied Constant Stress and Its Application to Yield Problems of Mild Steel. High Velocity Deformation of Solids, edited by Kawata, K. and Shioiri, J., IUTAM Symposium Tokyo/Japan, 1977 (1979) 132–148.

    Google Scholar 

  13. Yokobori, A.T., Jr.; Yokobori, T.; Kamei, A.: Computer Simulation of the Dynamic Behaviour of Dislocation Groups of Opposite Sign Emitted from a Stressed Source. J. Materials Science and Engineering 40 (1979) 111–118.

    Article  Google Scholar 

  14. Yokobori, T.: Zairyo Kyodogaku, 2nd edition, (in Japanese), Iwanami Shoten (1974)112.

    Google Scholar 

  15. Yokobori, T.; Konosu, S.: The Elastic-Plastic Stress Distribution near the Flat Surfaced Notch with Cycloidal Tip in a Work-hardening Material. Ing.-Arch. 45 (1976) 243–247.

    Article  MATH  Google Scholar 

  16. Cottrell, A.H.: Dislocations and Plastic Flow in Crystals. Clarendon Press, Oxford (1953).

    MATH  Google Scholar 

  17. Kanninen, M.F.; Rosenfield, A.R.: Dynamics of Dislocation Pile-up Formation. Phil. Mag. 20 (1969) 569–587.

    Article  ADS  Google Scholar 

  18. Gerstle, F.P.; Dvorak, G.J.: Dynamic Formation and Release of a Dislocation Pile-up against a viscous Obstacle. Phil. Mag. 29 (1974) 1337–1346.

    Article  ADS  Google Scholar 

  19. Yokobori, T.; Ichikawa, M.: The Interaction of Parallel Elastic Cracks and Parallel Slip Bands Respectively Based on the Concept of Continuous Distribution of Dislocations I. Rep. Res. Inst. Strength and Fracture of Materials, Tohoku Univ./ Japan 3 (1967)1–14.

    Google Scholar 

  20. Turner, A.P.L.; Vreeland, T.,Jr.: The Effect of Stress and Temperature on the Velocity of Dislocations in Pure Iron Monocrystals. Acta Metallurgica 18 (1970) 1225–1235.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag, Berlin, Heidelberg

About this paper

Cite this paper

Yokobori, T., Yokobori, A.T. (1981). Physical and Phenomenological Model with Non-Linearity in Ductile Fracture and Fatigue Crack Growth. In: Hult, J., Lemaitre, J. (eds) Physical Non-Linearities in Structural Analysis. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81582-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81582-9_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81584-3

  • Online ISBN: 978-3-642-81582-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics