Skip to main content

Numerical Techniques for the Finite Element Analysis of Elastic and Inelastic Material Nonlinearities

  • Conference paper
  • 524 Accesses

Summary

The objective of the paper is to unify nonlinear elastic and inelastic computations within the framework of the finite element method. Essentially two aspects are considered, (i) the step-by-step integration of the inelastic rate equations, and (ii) the solution of the underlying algebraic problem within each time step. In the first area stability and accuracy are of prime concern for the integration of the inelastic evolution laws with explicit or implicit time operators. In the second field direct forward approaches are contrasted with iterative strategies using both initial load and tangential gradient methods for advancing the solution within a given time interval. The overall computational schemes are illustrated at the viscoplastic example of a thick-walled cylinder subjected to internal pressure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. H. Argyris, L. E. Vaz, K. J. Willam, Improved solution methods for inelastic rate problems, Comp. Meth. Appl. Mech. Eng. 16 (1978) 231–277.

    Article  MATH  Google Scholar 

  2. T. J. R. Hughes, R.L. Taylor, Unconditionally stable algorithms for quasistatic elastoviscoplastic finite element analysis, Comp. Struct. 8 (1978) 169–173.

    MATH  Google Scholar 

  3. H. Matthies, G. Strang, The solution of nonlinear finite element equations, Int. J. Num. Meth. Eng. 14 (1979) 1613–1626.

    Article  MATH  MathSciNet  Google Scholar 

  4. K. J. Willam, Numerical solution of inelastic rate processes, Comp. Struct. 8 (1978) 511–531.

    MATH  Google Scholar 

  5. M. B. Kranchi, O. C. Zienkiewicz, D. R. J. Owen, The viscoplastic approach to problems of plasticity and creep involving geometric nonlinear effects, Int. J. Num. Meth. Eng. 12 (1978) 169–181.

    Article  Google Scholar 

  6. R. M. Zirin, E. Krempl, A finite element time integration method for the theory of viscoplasticity based on infinitesimal total strain, ASME Publ. 80-C2/PVP-33 (1980).

    Google Scholar 

  7. J. H. Argyris, J. St. Doltsinis, W. C. Knudson, L. E. Vaz, K. J. Willam, Numerical solution of transient nonlinear problems, Fenomech ’78 Proc., University of Stuttgart, Aug. 30 - Sept. 1, 1978, Comp. Meth. Appl. Mech. Eng. 17 /18 (1979) 341–409.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag, Berlin, Heidelberg

About this paper

Cite this paper

Argyris, J.H., Vaz, L.E., Willam, K.J. (1981). Numerical Techniques for the Finite Element Analysis of Elastic and Inelastic Material Nonlinearities. In: Hult, J., Lemaitre, J. (eds) Physical Non-Linearities in Structural Analysis. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81582-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81582-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81584-3

  • Online ISBN: 978-3-642-81582-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics