Atomic Configuration of Point Defects

  • Michel Lannoo
  • Jacques Bourgoin
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 22)


In this first chapter, we define the objects that we shall be dealing with throughout this textbook. The defects are defined by their chemical nature and their geometrical configuration. As will be seen in [1.1], the geometrical configuration, which includes the interaction of the defect with the lattice, i.e., the lattice rearrangement around the defect, can be experimentally obtained from “spectroscopic” measurements (electron paramagnetic resonance and optical techniques). Considerations on defect geometry are necessary from the beginning for two reasons: first, atomic configurations and electronic structures are not independent, and secondly, the symmetry allows one, through the use of group theory, to simplify the treatment of electronic structures.


Basis Function Point Defect Irreducible Representation Symmetry Operation Character Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.1
    J. Bourgoin, M. Lannoo: Point Defects in Semiconductors II. Experimental Aspects, Springer Series in Solid State Sciences, Vol.35 (Springer, Berlin, Heidelberg, New York)Google Scholar
  2. 1.2
    G. Burns, A.M. Glazer: Space Groups for Solid State Scientists (Academic, New York 1978)Google Scholar
  3. 1.3
    M. Tinkham: Group Theory and Quantum Mechanics (McGraw-Hill, New York 1964)MATHGoogle Scholar
  4. 1.4
    V. Heine: Group Theory and Quantum Mechanics (Pergamon, London 1960)Google Scholar
  5. 1.5
    R.M. Hochstraner: Molecular Aspects of Symmetry (Benjamin, New York 1966)Google Scholar
  6. 1.6
    B.K. Vainshtein: Modem Crystallography I, Symmetry of Crystals, Methods of Structural Crystallography, Springer Series in Solid State Sciences, Vol.15 (Springer, Berlin, Heidelberg, New York 1981)Google Scholar
  7. 1.7
    T.M. Morgan: Proc, 11th Intern. Conf. on the Physics of Semiconductors, Vol.2, ed. by M. Miasek (Elsevier, Amsterdam 1972) p.989Google Scholar
  8. 1.8
    G.L. Bir, G.E. Pikus: Symmetry and Strain Induced Effects in Semiconductors (Wiley, New York 1974)Google Scholar
  9. 1.9
    A.A. Kaplyanskii: Opt. Spectrosc. (USSR) 16, 329 and 557 (1964)ADSGoogle Scholar
  10. 1.10
    A.M. Stoneham: Theory of Defects in Solids (Clarendon Press, Oxford 1975) Chap.12Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Michel Lannoo
    • 1
  • Jacques Bourgoin
    • 1
  1. 1.Laboratoire d’Etude des Surfaces et Interfaces, Physique des SolidesInstitut Superieur d’Electronique du NordLille CédexFrance

Personalised recommendations