Assembly of Membrane Proteins in Escherichia coli. A Genetic Approach

  • M. Schwartz
Conference paper
Part of the Colloquium der Gesellschaft für Biologische Chemie book series (MOSBACH, volume 31)


Each type of membrane present in a eukaryotic cell contains a specific set of proteins. With the exception of some of the proteins present in mitochondria or chloroplasts, and formed within these organelles, all membrane proteins are synthesized in the cytoplasm. There seems to be a consensus that these proteins can follow either of two routes from their site of formation to their final location. The first route was originally uncovered for secreted proteins. It starts by a synthesis on polysomes bound to the rough endoplasmic reticulum (RER). It concerns proteins which end up in the RER itself, in the Golgi apparatus, in lysosomes, in the plasma membrane, and perhaps in other organelles as well (Palade 1975; Rothman and Lenard 1977; Katz et al. 1977; Rothman and Lodish 1977). The other route is that followed by several of the proteins which end up in mitochondria or chloroplasts. These are synthesized on free polysomes, like the cytoplasmic proteins, and they reach directly their final location (Chua and Schmidt 1978, 1979; Highfield and Ellis 1978; Schatz 1979; Raymond and Shore 1979; Poyton and McKemmie 1979).


Rough Endoplasmic Reticulum Outer Membrane Protein Hybrid Gene Hybrid Protein Signal Hypothesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bassford P, Beckwith J (1979) Escherichia coli mutants accumulating the precursor of a secreted protein in the cytoplasm. Nature (London) 277: 538–541CrossRefGoogle Scholar
  2. Bassford PJ Jr, Silhavy TJ, Beckwith J (1979) Use of gene fusion to study secretion of maltose-binding protein into Escherichia coli periplasm. J Bacteriol 139: 19–31PubMedGoogle Scholar
  3. Bedouelle H, Bassford PJ Jr, Fowler AV, Zabin I, Beckwith J, Hofnung M (1980) The nature of mutational alterations in the signal sequence of the maltose binding protein of Escherichia coli. Nature (London) 285: 78–81CrossRefGoogle Scholar
  4. Blobel G, Dobberstein B (1975) Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane bound ribosomes of murine myeloma. J Cell Biol 67: 835–851PubMedCrossRefGoogle Scholar
  5. Blobel G, Sabatini DD (1971) Ribosome-membrane interaction in eukaryotic cells. In: Manson LA (ed) Biomembranes, vol II. Plenum Publ Corp, New York, p 193–195Google Scholar
  6. Boon T (1971) Inactivation of ribosomes in vitro by colicin E3 and its mechanism of action. Proc Natl Acad Sci USA 68: 2421–2425PubMedCrossRefGoogle Scholar
  7. Bowman CM, Sidikaro J, Nomura M (1971) Specific inactivation of ribosomes by colicin E3 in vitro and mechanism of immunity in colicinogenic cells. Nature New Biol (London) 234: 133–137Google Scholar
  8. Casadaban MJ (1976) Transposition and fusion of the lac genes to selected promoters in E. coli using bacteriophages a and Mu. J Mol Biol 104: 541–555PubMedCrossRefGoogle Scholar
  9. Chang CN, Model P, Blobel G (1979) Membrane biogenesis: cotranslational integration of the bacteriophage fl coat protein into an Escherichia coli membrane fraction. Proc Natl Acad Sci USA 76: 1251–1255PubMedCrossRefGoogle Scholar
  10. Chua NH, Schmidt G (1978) Post translational transport into chloroplasts of a precursor to the small subunit of ribulose-1,5-bisphosphate carboxylase. Proc Natl Acad Sci USA 75: 6110–6114PubMedCrossRefGoogle Scholar
  11. Chua NH, Schmidt G (1979) Transport of proteins into mitochondria and chloroplasts. J Cell Biol 81: 461–483PubMedCrossRefGoogle Scholar
  12. Davis BD, Tai PC (1980) The mechanism of protein secretion across membranes. Nature (London) 283: 433–438CrossRefGoogle Scholar
  13. Emr SD, Silhavy TJ (1980) Mutations affecting localization of an Escherichia coli outer membrane protein, the bacteriophage X receptor. J Mol Biol 141: 63–90PubMedCrossRefGoogle Scholar
  14. Emr SD, Schwartz M, Silhavy TJ (1978) Mutations altering the cellular localization of the phage X receptor, an Escherichia coli outer membrane protein. Proc Natl. Acad Sci USA 75: 5802–5806PubMedCrossRefGoogle Scholar
  15. Emr SD, Hedgpeth J, Clément JM, Silhavy TJ, Hofnung M (1980) Sequence analysis of mutations that present export of X receptor, an Escherichia coli outer membrane protein. Nature (London) 285: 82–85CrossRefGoogle Scholar
  16. Fraser TH, Bruce BJ (1978) Chicken ovalbumin is synthesized and secreted by Escherichia coli. Proc Natl Acad Sci USA 75: 5936–5940PubMedCrossRefGoogle Scholar
  17. Hardy KG (1975) Colicinogeny and related phenomena. Bacteriol. Rev. 39: 464–515PubMedGoogle Scholar
  18. Hedgpeth J, Clément JM, Marchal C, Perrin D, Hofnung M (1980) Proc Natl Acad Sci USA 77: 2621–2625PubMedCrossRefGoogle Scholar
  19. Highfield PE, Ellis RT (1978) Synthesis and transport of the small subunit of chloroplast ribulose bisphosphate carboxylase. Nature (London) 271: 420–424CrossRefGoogle Scholar
  20. Holland IB (1975) Physiology of colicin action. Adv Microb Physiol 12: 55–139CrossRefGoogle Scholar
  21. Holland IB (1976) Colicin E3 and related bacteriocins: penetration of the bacterial surface and mechanism of ribosomal inactivation. In: Cuatracasas P (ed) Receptors and recognition, vol I. Chapman and Hall, London, pp 99–127Google Scholar
  22. Inouye H, Beckwith J (1977) Synthesis and processing of an Escherichia coli alkaline phosphatase precursor in vitro. Proc Natl Acad Sci USA 74: 1440–1444PubMedCrossRefGoogle Scholar
  23. Inouye S, Wang S, Sekizawa J, Halegoua S, Inouye M (1977) Amino acid sequence for the peptide extension on the prolipoprotein of the Escherichia coli outer membrane. Proc Natl Acad Sci USA 84: 1004–1008CrossRefGoogle Scholar
  24. Katz FN, Rothman JE, Lingappa VP, Blobel G, Lodish JF (1977) Membrane assembly in vitro: synthesis, glycosylation, and asymmetric insertion of a transmembrane protein. Proc Natl Acad Sci USA 74: 3278–3282PubMedCrossRefGoogle Scholar
  25. Lederberg EM (1955) Pleiotropy for maltose fermentation and phage resistance in E. coli K12. Genetics 40: 580–581Google Scholar
  26. Lin JJC, Kanazawa H, Ozols J, Wu HC (1978) An Escherichia coli mutant with an amino acid alteration within the signal sequence of outer membrane prolipoprotein. Proc Natl Acad Sci USA 75: 4891–4895PubMedCrossRefGoogle Scholar
  27. Marchai C, Perrin D, Hedgpeth J, Hofnung M (1980) Synthesis and maturation of the X receptor in E. coli K12: in vivo and in vitro expression of gene ZamB under lac promoter control. Proc Natl Acad Sci USA 77: 1491–1495CrossRefGoogle Scholar
  28. Milstein C, Brownlee GG, Harrison TM, Mathews MB (1972) A possible precursor of immunoglobin light chains. Nature (London) New Biol 239: 117–120CrossRefGoogle Scholar
  29. Mock M, Schwartz M (1978) Mechanism of colicin E3 production in strains harboring wild-type or mutant plasmids. J Bacteriol 136: 700–707PubMedGoogle Scholar
  30. Mock M, Schwartz M (1980) Mutations which affect the structure and activity of colicin E3. J Bacteriol 142: 384–390PubMedGoogle Scholar
  31. Moreno F, Fowler AV, Hall M, Silhavy TJ, Zabin I, Schwartz M (1980) A signal sequence is not sufficient to lead ß-galactosidase out of the cytoplasm. Nature (London) 286: 356–359CrossRefGoogle Scholar
  32. Palade GE (1975) Intracellular aspects of the process of protein secretion. Science 189: 347–358PubMedCrossRefGoogle Scholar
  33. Poyton RO, McKemmie E (1979) A polyprotein precursor to all four cytoplasmically translated subunits of cytochrome C oxydase from Saccharomyces cerevisiae. J Biol Chem 254: 6763–6771PubMedGoogle Scholar
  34. Raibaud O, Roa M, Braun-Breton C, Schwartz M (1979) Structure of the maZB region in Escherichia coli K12 I Genetic map of the malK—ZamB operon. Mol Gen Genet 174: 241–248PubMedCrossRefGoogle Scholar
  35. Randall LL, Hardy SJS (1977) Synthesis of exported proteins by membrane bound polysomes from Escherichia coli. Eur J Biochem 75: 43–53PubMedCrossRefGoogle Scholar
  36. Randall LL, Hardy SJS, Josefsson LG (1978) Precursors of three exported proteins in Escherichia coli. Proc Natl Acad Sci USA 75: 1209–1212PubMedCrossRefGoogle Scholar
  37. Randall-Hazelbauer L, Schwartz M (1973) Isolation of the bacteriophage lambda receptor from Escherichia coli. J Bacteriol 116: 1436–1446PubMedGoogle Scholar
  38. Raymond Y, Shore GC (1979) The precursor for carbamyl phosphate synthetase is transported to mitochondria via a cytosolic route. J Biol Chem 254: 9335–9338PubMedGoogle Scholar
  39. Rothman JE, Lenard J (1977) Membrane assymmetry. Science 195: 743–755PubMedCrossRefGoogle Scholar
  40. Rothman JE, Lodish HF (1971) Synchronized transmembrane insertion and glycosylation of a nascent membrane protein. Nature (London) 269: 775–780CrossRefGoogle Scholar
  41. Schatz G (1979) How mitochondria import proteins from the cytoplasm. FEES Lett 103: 203–211CrossRefGoogle Scholar
  42. Silhavy TJ, Casadaban MJ, Shuman HA, Beckwith J (1976) Conversion of ß-galactosidase to a membrane-bound state by gene fusion. Proc Natl Acad Sci USA 73: 3423–3427PubMedCrossRefGoogle Scholar
  43. Silhavy TJ, Shuman HA, Beckwith J, Schwartz M (1977) Use of gene fusions to study outer membrane protein localization in Escherichia coli. Proc Natl Acad Sci USA 74: 5411–5415PubMedCrossRefGoogle Scholar
  44. Silhavy TJ, Bassford PJ Jr, Beckwith JR (1979) A genetic approach to the study of protein localization in Escherichia coli. In: Inouye (ed) Bacterial outer membranes: biogenesis and function. John Wiley and Sons Inc, New York, p 203–254Google Scholar
  45. Smith WP, Tai PC, Thompson RC, Davis BD (1977) Extracellular labelling of nascent polypeptides traversing the membrane of Escherichia coli. Proc Natl Acad Sci USA 74: 2830–2834PubMedCrossRefGoogle Scholar
  46. Sutcliffe JG (1978) Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmìd pBR322. Proc Natl Acad Sci USA 75: 3737–3741PubMedCrossRefGoogle Scholar
  47. Szmelcman S, Hofnung M (1975) Maltose transport in Escherichia coli K12. Involvement of the bacteriophage lambda receptor. J Bacteriol 124: 112–118PubMedGoogle Scholar
  48. Varenne S, Piovant M, Pages JM, Lazdunski C (1978) Evidence for synthesis of alkaline phosphatase on membrane-bound polysomes in Escherichia coli. Eur J Biochem 86: 603–606PubMedCrossRefGoogle Scholar
  49. Wandersman C, Schwartz M, Ferenci T (1979) Escherichia coli mutants impaired in maltodextrin transport. J Bacteriol 140: 1–13PubMedGoogle Scholar
  50. Wickner W (1979) The assembly of proteins into biological membranes: the membrane trigger hypothesis. Annu Rev Biochem 48: 23–45PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • M. Schwartz
    • 1
  1. 1.Unité de Génétique MoléculaireDépartement de Biologie Moléculaire, Institut PasteurParis Cedex 15France

Personalised recommendations