Optical Spectroscopy of Monolayers, Multilayer Assemblies, and Single Model Membranes

  • J. Heesemann
  • H. P. Zingsheim
Part of the Molecular Biology Biochemistry and Biophysics book series (MOLECULAR, volume 31)


During the past few years considerable advances in the knowledge of membrane structure have been made. Undoubtedly, spectroscopic probes — dyes in particular — have greatly contributed to that progress. The success of the probe approach depends on the ability to introduce the probe into a selected region of the membrane and to observe interpretable signals from it.


Lipid Bilayer Membrane Fluorescence Correlation Spectroscopy Transition Moment Lipid Monolayer Black Lipid Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alamuti, N., Läuger, P.: Fluorescence of thin chlorophyll membranes in aqueous phase. Biochim. Biophys. Acta 211, 362–364 (1970).Google Scholar
  2. Aoshima, R., Iriyama, K., Asai, H.: High sensitivity fluorophotometer using photon counting. Appl. Opt. 12, 2748–2750 (1973).PubMedGoogle Scholar
  3. Aveyard, R., Haydon, D.A.: An Introduction to the Principles of Surface Chemistry. Cambridge: University Press 1973.Google Scholar
  4. Bamberg, E., Läuger, P.: Channel formation kinetics of gramicidin A in lipid bilayer membranes. J. Membr. Biol. 11, 177–194 (1973).PubMedGoogle Scholar
  5. Bretscher, M.S., Raff, M.C.: Mammalian plasma membranes. Nature 258, 4349 (1975).Google Scholar
  6. Brody, S.S.: Interactions between ferredoxin and chlorophyll in a monolayer system. Z. Natur-forsch. 26b, 922–929 (1971).Google Scholar
  7. Bücher, H., Kuhn, H.: Scheibe aggregate formation of cyanine dyes in monolayers. Chem. Phys. Lett. 6, 183–185 (1970a).Google Scholar
  8. Bücher, H., Kuhn, H.: Difference between ground and excited state dipole moments and polarizabilities as determined from electrochromism of Scheibe-aggregates in monolayer assemblies. Z. Naturforsch. 25b, 1323–1327 (1970b).Google Scholar
  9. Bücher, H., Drexhage, K.H., Fleck, M., Kuhn, H., Möbius, D., Schäfer, F.P., Sondermann, J., Sperling, W., Tillmann, P., Wiegand, J.: Controlled transfer of excitation energy through thin layers. MdL Cryst. 2, 199–230 (1967).Google Scholar
  10. Bücher, H., Wiegand, J., Snavely, B.B., Beck, K.H., Kuhn, H.: Electric field induced changes in the optical absorption of a merocyanine dye. Chem. Phys. Lett. 3, 508–510 (1969).Google Scholar
  11. Cadenhead, D.A., Kellner, B.M.J., Jacobson, K., Papahadjopoulos, D.: Fluorescent probes in model membranes I: Anthroyl fatty acid derivatives in monolayers and liposomes of dipalmitoylphos-phatidylcholine. Biochemistry 16, 5386–5392 (1977).PubMedGoogle Scholar
  12. Carbone, E., Malerba, F., Poli, M.: Orientation and rotational freedom of fluorescent probes in lecithin bilayers. Biophys. Struct. Mech. 2, 251–266 (1976).PubMedGoogle Scholar
  13. Cherry, R.J., Hsu, K., Chapman, D.: Absorption spectroscopy of chlorophyll in bimolecular lipid membranes. Biochem. Biophys. Res. Commun. 43, 351–358 (1971a).PubMedGoogle Scholar
  14. Cherry, R.J., Hsu, K., Chapman, D.: Polarized absorption spectroscopy of chlorophyll-lipid membranes. Biochim. Biophys. Acta 267, 512–522 (1971b).Google Scholar
  15. Cohen, L.B., Salzberg, B.M., Davila, H.V., Ross, W.N., Landowne, D., Waggoner, A.S., Wang, C.H.: Changes in axon fluorescence during activity: Molecular probes of membrane potential. J. Membr. Biol. 19, 1–36 (1974).PubMedGoogle Scholar
  16. Conti, F.: Fluorescent probes in nerve membranes, Annu, Rev. Biophys. Bioeng. 4, 287–310 (1975).Google Scholar
  17. Conti, F., Malerba, F.: Fluorescence signals in ANS-stained lipid bilayers under applied potentials. Biophysik 8, 326–332 (1972).PubMedGoogle Scholar
  18. Conti, F., Fioravanti, R., Malerba, F., Wanke, E.: A comparative analysis of extrinsic fluorescence in nerve membranes and lipid bilayers. Biophys. Struct. Mech. 1, 27–45 (1974).Google Scholar
  19. Czikkely, V., Försterling, H.D., Kuhn, H.: Extended dipole model for aggregates of dye molecules. Chem. Phys. Lett. 6, 207–210 (1970).Google Scholar
  20. Dragsten, P.R., Webb, W.W.: Mechanism of the membrane potential sensitivity of the fluorescent membrane probe merocyanine 540. Biochemistry 17, 5228–5240 (1978).PubMedGoogle Scholar
  21. Drexhage, K.H., Zwick, M.M., Kuhn, H.: Sensibilisierte Fluoreszenz nach strahlungslosem Energieübergang durch dünne Schichten. Ber. Bunsenges. Physik. Chem. 67, 62–67 (1963).Google Scholar
  22. Edelman, G.M.: Surface modulation in cell recognition and cell growth. Science 192, 218–226 (1976).PubMedGoogle Scholar
  23. Edidin, M.: Rotational and translational diffusion in membranes. Annu. Rev. Biophys. Bioeng. 3, 179–201 (1974).PubMedGoogle Scholar
  24. Elson, E.L., Madge, D.: Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13, 1–27 (1974).Google Scholar
  25. Elson, E.L., Webb, W.W.: Concentration correlation spectroscopy: A new biophysical probe based on occupation number fluctuations. Annu. Rev. Biophys. Bioeng. 4, 311–334 (1975).PubMedGoogle Scholar
  26. Fahey, P.F., Koppel, D.E., Barak, L.S., Wolf, D.E., Elson, E.L., Webb, W.W.: Lateral diffusion in planar lipid bilayers. Science 195, 305–306 (1977).PubMedGoogle Scholar
  27. Fernandez, M.S., Fromherz, P.: Lipoid pH indicators as probes of electrical potential and polarity in micelles. J. Phys. Chem. 81, 1755–1761 (1977).Google Scholar
  28. Fettiplace, R., Gordon, L.G.M., Hladky, S.B., Requena, J., Zingsheim, H.P., Haydon, D.A., in: Methods in Membrane Biology (ed. Korn, E.D.), Vol. IV, pp. 1–75. New York, London: Plenum Press 1975.Google Scholar
  29. Förster, T.: Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 6. Folge 55–84 (1948).Google Scholar
  30. Förster, T.: Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27, 7–17 (1959).Google Scholar
  31. Fromherz, P.: Monolayer states of a cyanine dye studied by a spectroscopic technique. Z. Natur-forsch. 28c, 144–148 (1973a).Google Scholar
  32. Fromherz, P.: A new method for investigation of lipid assemblies with a lipoid pH indicator in mono- molecular films. Biochim. Biophys. Acta 323, 326–334 (1973b).PubMedGoogle Scholar
  33. Fromherz, P., Masters, B.: Interfacial pH at electrically charged lipid monolayers investigated by the lipoid pH-indicator method. Biochim. Biophys. Acta 356, 270–275 (1974).PubMedGoogle Scholar
  34. Fukuda, K., Nakahara, H., Kato, T.: Monolayers and multilayers of anthraquinone derivatives containing long alkyl chains. J. Coll. Interface Sci. 54, 430–438 (1976).Google Scholar
  35. Gaines, G.L., Jr.: Insoluble Monolayers at Liquid-Gas Interfaces. New York-London: Interscience 1966.Google Scholar
  36. Giles, C.H., Neustadter, E.L.: Researches on monolayers. Part I. Molecular areas and orientation at water surfaces of aromatic azo-compounds containing long alkyl chains. J. Chem. Soc, part 1, 918–923 (1952).Google Scholar
  37. Goodall, M.C.: Structural effect in the action of antibiotics on the ion permeability of lipid bilayers. III. Gramicidin “A” and “S” and lipid specificity. Biochem. Biophys. Acta 219, 471–478 (1970).PubMedGoogle Scholar
  38. Gruda, I., Leblanc, R.M.: Synthesis of some long-chain spiropyranindolines. Can. J. Chem. 54, 576–580 (1976).Google Scholar
  39. Heesemann, J.: Diglyceridchromophorsysteme als Bausteine für organisierte Schichtverbände. Ph.D. Thesis, University of Göttingen (1976).Google Scholar
  40. Heesemann, J.: Elektrochromism of oriented dyes in monolayer capacitors. Ber. Bunsenges. Phys. Chem. 82, 868 (1978).Google Scholar
  41. Heesemann, J.: Studies on monolayers I: Surface tension and absorption spectroscopic measurements of monolayers of surface-active azo- and stilbene-dyes. J. Am. Chem. Soc. 102, 2161–2176 (1980a).Google Scholar
  42. Heesemann, J.: Studies on Monolayers. II: Designed monolayer assemblies of mixed films of surface-active azo dyes. J. Am. Chem. Soc. 102, 2176–2181 (1980b).Google Scholar
  43. Herbert, T.J., Elson, E., Webb, W.W.: Fluorescence correlation spectroscopy of lipid bilayer membranes. Fed. Proc. 33, 1303 (1974).Google Scholar
  44. Hladky, S.B., Haydon, D.A.: Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature 225, 451–453 (1970).PubMedGoogle Scholar
  45. Hoffman, J.F., Laris, P.C., Determination of membrane potentials in human and Amphiuma red blood cells by means of a fluorescent probe. J. Physiol. 239, 519–552 (1974).PubMedGoogle Scholar
  46. Kolb, H.-A., Läuger, P., Bamberg, E.: Correlation analysis of electrical noise in lipid bilayer membranes: Kinetics of gramicidin a channels. Membr. Biol. 20, 133–154 (1975).Google Scholar
  47. Kleuser, D., Bücher, H.: Elektrochromie von Chlorophyll-a und Chlorophyll-b in monomolekularen Filmen. Z. Naturforsch. 24b, 1371–1374 (1969).Google Scholar
  48. Kuhn, H.: Classical aspects of energy transfer in molecular systems. J. Chem. Phys. 53, 101–108 (1970).Google Scholar
  49. Kuhn, H., Möbius, D., Bücher, H., in: Physical Methods of Chemistry, Part III (eds. Weissberger, A., Rossiter, B.W.), pp. 577–702. New York-London: Interscience 1972.Google Scholar
  50. Labhart, H.: Beeinflussung der Lichtabsorption organischer Farbstoffe durch äussere elektrische Felder. I. Theoretische Betrachtung. Helv. Chim. Acta 44, 447–456 (1961).Google Scholar
  51. Langmuir, I.: The mechanism of the surface phenomena of flotation. Trans. Faraday Soc. 15(3), 62–74 (1920).Google Scholar
  52. Lippert, E.: Dipolmoment und Elektronenstruktur von angeregten Molekülen. Z. Naturforsch. 10a, 541–545 (1955).Google Scholar
  53. Liptay, W.: Elektrochemie — Solvatochromie. Angew. Chem. 81, 195–232 (1969).Google Scholar
  54. Liptay, W.: Excited states, vol. 1, 129–148. New York: Academic Press (1974).Google Scholar
  55. Liptay, W., Czekalla, J.: Die Bestimmung von absoluten Übergangsmomentrichtungen und von Dipolmomenten angeregter Moleküle aus Messungen des elektrischen Dichroismus. I. Theorie. Z. Naturforsch. 15a, 1072–1079 (1960).Google Scholar
  56. Madge, D., Elson, E.L., Webb, W.W.: Thermodynamic fluctuations in a reacting system — measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–711 (1972).Google Scholar
  57. Madge, D., Elson, E., Webb, W.W.: Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13, 29–61 (1974).Google Scholar
  58. Möbius, D.: Designed monolayer assemblies. Ber. Bunsenges. Phys. Chem. 82, 848–858 (1978).Google Scholar
  59. Montai, M., Mueller, P.: Formation of bimolecular membranes from lipid monolayers, and a study of their electrical properties. Proc. Natl. Acad. Sci. USA 69, 3561–3566 (1972).Google Scholar
  60. Mormann, W., Kuhn, H.: Seifenlamellen mit Doppelsandwichstruktur. Z. Naturforsch. 24b/10, 1340–1341 (1969).Google Scholar
  61. Mueller, P., Rudin, D.O., Tien, H.T., Wescott, W.C.: Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194, 979–980 (1962).PubMedGoogle Scholar
  62. Neher, E.: Asymmetric membranes resulting from the fusion of two black lipid bilayers. Biochim. Biophys. Acta 373, 327–336 (1974).PubMedGoogle Scholar
  63. Nicolson, G.: Transmembrane control of the receptors on normal and tumor cells. I. cytoplasmic influence over cell surface components. Biochim. Biophys. Acta 457, 57–108 (1976).PubMedGoogle Scholar
  64. Pagano, R., Thompson, T.E.: Spherical lipid bilayer membranes. Biochim. Biophys. Acta 144, 666–669 (1967).PubMedGoogle Scholar
  65. Peters, R.: The effect of rehydration on the thickness of erythrocyte membranes as observed by energy transfer. Biochim. Biophys. Acta 318, 469–473 (1973a).Google Scholar
  66. Peters, R.: The thickness of air-dried human erythrocyte membranes as determined by energy transfer. Biochim. Biophys. Acta 330, 53–60 (1973b).PubMedGoogle Scholar
  67. Peters, R., Peters, J., Tews, K.H., Bähr, W.: A microfluorimetric study of translational diffusion in erythrocyte membranes. Biochim. Biophys. Acta 367, 282–294 (1974).PubMedGoogle Scholar
  68. Platt, J.R.: Electrochromism, a possible change of color producible in dyes by an electric field. J. Chem. Phys. 34, 862–863 (1961).Google Scholar
  69. Pockels, A.: Surface tension (Letters to the editor). Nature 43, 437–439 (1891).Google Scholar
  70. Pohl, G.W.: Energy transfer in black lipid membranes. Biochim. Biophys. Acta 288, 248–253 (1972).PubMedGoogle Scholar
  71. Radda, G.K.: Fluorescent probes in membrane studies. In: Methods in Membrane Biology (ed. Korn, E.D.), Vol. IV, pp. 97–188. New York: Plenum Press 1975.Google Scholar
  72. Reich, R., Scheerer, R.: Effect of electric field on the absorption spectrum of dye molecules in lipid layers. IV. Electrochromism of oriented chlorophyll-b. Ber. Bunsenges. Phys. Chem. 80, 542–547 (1976).Google Scholar
  73. Reich, R., Schmidt, S.: Über den Einfluß elektrischer Felder auf das Absorptionsspektrum von Farbstoffmolekülen in Lipidschichten. I. Theorie. Ber. Bunsenges. Phys. Chem. 76, 589–598 (1972).Google Scholar
  74. Reich, R., Sewe, K.-U.: The effect of molecular polarization on the electrochromism of carotenoids. I. The influence of a carboxylic group. Photochem. Photobiol. 26, 11–17 (1977).Google Scholar
  75. Ross, W.N., Salzberg, B.M., Cohen, L.B., Grinvald, A., Davila, H.V., Waggoner, A.S., Wang, C.H.: Changes in absorption, fluorescence, dichroism and birefringence in stained giant axon: Optical measurement of membrane potential. J. Membr. Biol. 33, 141–183 (1977).PubMedGoogle Scholar
  76. Schlessinger, J., Koppel, D.E., Axelrod, D., Jacobson, K., Webb, W.W.: Lateral transport in cell membranes: Mobility of concanavalin A receptors on myoblasts. Proc. Natl. Acad. Sci. USA 73, 2409–2413 (1976).PubMedGoogle Scholar
  77. Schlessinger, J., Axelrod, D., Koppel, D.E., Webb, W.W.: Lateral transport of a lipid probe and labelled proteins on a cell membrane. Science 195, 307–309 (1977).PubMedGoogle Scholar
  78. Schmidt, S., Reich, R.: Über den Einfluß elektrischer Felder auf das Absorptionsspektrum von Farbstoffmolekülen in Lipidschichten. II. Messungen an Rhodamin B. Ber. Bunsenges. Phys. Chem. 76, 599–602 (1972a).Google Scholar
  79. Schmidt, S., Reich, R.: Über den Einfluß elektrischer Felder auf das Absorptionsspektrum von Farbstoffmolekülen in Lipidschichten. III. Elektrochemie eines Carotinoids (Lutein). Ber. Bunsenges. Phys. Chem. 76, 1202–1208 (1972b).Google Scholar
  80. Schmidt, S., Reich, R., Witt, H.T.: Absorptionsänderungen von Chlorophyll-b im elektrischen Feld. Z. Naturforsch. 24b, 1428–1431 (1969).Google Scholar
  81. Sewe, K.-U., Reich, R.: The effect of molecular polarization on the electrochromism of carotenoids. II. Lutein-chlorophyll complexes: The origin of the field-indicating absorption-change at 520 nm in the membrane of photosynthesis. Z. Naturforsch. 32c, 161–171 (1977).Google Scholar
  82. Sims, P.J., Waggoner, A.S., Wang, C.-H., Hoffman, J.F.: Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13, 3315–3330 (1974).PubMedGoogle Scholar
  83. Steinemann, A., Läuger, P.: Interaction of cytochrome c with phospholipid monolayers and bilayer membranes. J. Membr. Biol. 4, 74–86 (1971).Google Scholar
  84. Steinemann, A., Alamuti, N., Brodmann, W., Marschall, O., Läuger, P.: Optical properties of artificial chlorophyll membranes. J. Membr. Biol. 4, 284–294 (1971).Google Scholar
  85. Tasaki, I., Watanabe, A., Sandlin, R., Camay, L.: Changes in fluorescence, turbidity, and birefrigence associated with nerve excitation. Proc. Natl. Acad. Sci. USA 61, 883–888 (1968).PubMedGoogle Scholar
  86. Tosteson, D.C., Andreoli, T.E., Tiefenberg, M., Cook, P.: The effects of macrocyclic compounds on cation transport in sheep red cells and thin and thick lipid membranes. J. Gen. Physiol. 51, 373S–384S (1968).PubMedGoogle Scholar
  87. Trissl, H.W.: Studies on the incorporation of fluorescent pigments into bilayer membranes. Biochim. Biophys. Acta 367, 326–337 (1974).PubMedGoogle Scholar
  88. Trosper, T.L.: Some properties of chlorophyll a at hydrocarbon-water interfaces and in black lipid membranes. J. Membr. Biol. 8, 133–148 (1972).PubMedGoogle Scholar
  89. Trosper, T.L., Park, R.B., Sauer, K.: Excitatiofi transfer by chlorophyll a in monolayers and the interaction with chloroplast glycolipids. Photochem. Photobiol. 7, 451–469 (1968).PubMedGoogle Scholar
  90. Tweet, A.G.: Spectrometer for optical studies of ultra-thin films. Rev. Sci. Instrum. 34, 1412–1417 (1963).Google Scholar
  91. Tweet, A.G., Bellamy, W.D., Gaines, G.L., Jr.: Fluorescence quenching and energy transfer in mono-molecular films containing chlorophyll. J. Chem. Phys. 41, 2068–2077 (1964).Google Scholar
  92. Tweet, A.G., Gaines, G.L., Jr., Bellamy, W.D.: Angular dependence of fluorescence from chlorophyll a in monolayers. J. Chem. Phys. 41, 1008–1010 (1969).Google Scholar
  93. Veatch, W., Stryer, L.: The dimeric nature of the gramicidin A transmembrane channel: Conductance and fluorescence energy transfer studies of hybrid channels. J. Mol. Biol. 113, 89–102 (1977).PubMedGoogle Scholar
  94. Veatch, W.R., Mathies, R., Eisenberg, M., Stryer, L.: Simultaneous fluorescence and conductance studies of planar bilayer membranes containing a highly active and fluorescent analog of gramicidin A. J. Mol. Biol. 99, 75–92 (1975).PubMedGoogle Scholar
  95. Waggoner, A.S.: Dye indicators of membrane potential. Annu. Rev. Biophys. Bioeng. 8, 47–68 (1979).PubMedGoogle Scholar
  96. Waggoner, A.S., Grinvald, A.: Mechanisms of rapid optical changes of potential sensitive dyes. Ann. N.Y. Acad. Sci. 303, 217–241 (1977).PubMedGoogle Scholar
  97. Waggoner, A.S., Stryer, L.: Fluorescent probes of biological membranes. Proc. Natl. Acad. Sci. USA 67, 579–589 (1970).PubMedGoogle Scholar
  98. Waggoner, A.S., Wang, C.H., Tolles, R.L.: Mechanism of potential-dependent light absorption changes in lipid bilayer membranes in the presence of cyanine and oxonol dyes. J. Membr. Biol. 33, 109–140 (1977).PubMedGoogle Scholar
  99. Wolf, D.E., Schlessinger, J., Elson, E.L., Webb, W.W., Blumenthal, R., Henkart, P.: Diffusion and patching of macromolecules on planar lipid bilayer membranes. Biochemistry 16, 3476–3483 (1977).PubMedGoogle Scholar
  100. Wu, E.-S., Jacobson, K., Papahadjopoulos, D.: Lateral diffusion in phospholipid multibilayers measured by fluorescence recovery after photobleaching. Biochemistry 16, 3936–3941 (1977).Google Scholar
  101. Wu, E.-S., Jacobson, K., Szoka, F., Portis, A., Jr.: Lateral diffusion of a hydrophobic peptide, N-4-nitrobenz-2-oxa-1,3-diazole gramicidin S, in phospholipid multibilayers. Biochemistry 17, 5543–5550(1978).PubMedGoogle Scholar
  102. Yguerabide, J., Stryer, L.: Fluorescence spectroscopy of an oriented model membrane. Proc. Natl. Acad. Sci. USA 68, 1217–1221 (1971).PubMedGoogle Scholar
  103. Zingsheim, H.P., Haydon, D.A.: Fluorescence spectroscopy of planar black lipid membranes. Probe adsorption and quantum yield determination. Biochim. Biophys. Acta 298, 755–768 (1973).PubMedGoogle Scholar
  104. Zingsheim, H.P., Neher, E.: The equivalence of fluctuation analysis and chemical relaxation measurements: A kinetic study of ion pore formation in thin lipid membranes. Biophys. Chem. 2, 197–207 (1974).PubMedGoogle Scholar
  105. Zwick, M.M., Kuhn, H.: Strahlungsloser Übergang von Elektronenanregungsenergie durch dünne Schichten. Z. Naturforsch. 17a, 411–414 (1962).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • J. Heesemann
    • 1
  • H. P. Zingsheim
    • 2
  1. 1.Institut für Med. Mikrobiologie und ImmunologieUniversitäts-Krankenhaus EppendorfHamburg 26Germany
  2. 2.Abt. molekularer SystemaufbauMax-Planck-Institut für biophysikalische Chemie (Karl-Friedrich-Bonhoeffer-Institut)Göttingen-NikolausbergGermany

Personalised recommendations