Nuclear Magnetic Resonance Studies of the Phospholipid Bilayer Membrane

  • S. I. Chan
  • D. F. Bocian
  • N. O. Petersen
Part of the Molecular Biology Biochemistry and Biophysics book series (MOLECULAR, volume 31)


The cell membrane has been the focus of much recent biochemical and biophysical research, primarily because of its role in cellular phenomena. Numerous efforts have been directed toward determining the motional state of the lipid components of the membrane, the motivation being the contention that the lipid bilayer is the basic matrix in which membrane proteins are embedded to form the biological membrane. As such, it is likely that such diverse phenomena as maintenance of ionic gradients and transmembrane potentials, activities of membrane-bound enzymes, interactions between membrane proteins, transmembrane signal transmission, intercellular communication, and manifestations of cellular development and cell transformation all depend on the structure and fluidity of the lipid bilayer.


Free Induction Decay Nuclear Magnetic Resonance Study Chemical Shift Anisotropy Bilayer Vesicle Phospholipid Bilayer Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abragam, A.: The Principles of Nuclear Magnetism. London: Oxford University Press 1961.Google Scholar
  2. Anderson, P.W.: A mathematical model for the narrowing of spectral lines by exchange or motion. J. Phys. Soc. Jpn. 9, 316–339 (1954).CrossRefGoogle Scholar
  3. Berden, J.A., Barker, R.W., Radda, G.K.: NMR studies on phospholipid bilayers. Some factors affecting lipid distribution. Biochim. Biophys. Acta 375, 186–298 (1975).PubMedCrossRefGoogle Scholar
  4. Bloom, M., Burneil, E.E., Valic, M.I., Weeks, G.: Nuclear magnetic resonance line shapes in lipid bi-layer model membranes. Chem. Phys. Lipids 14, 107–112 (1975).PubMedCrossRefGoogle Scholar
  5. Bloom, M., Burnell, E.E., Roeder, S.B.W., Valic, M.I.: Nuclear magnetic resonance line shapes in lyotropic liquid crystals and related systems. J. Chem. Phys. 66, 3012–3020 (1977).CrossRefGoogle Scholar
  6. Bocian, D.F., Chan, S.I.: NMR studies of membrane structure and dynamics. Annu. Rev. Phys. Chem. 29, 307–335(1978).CrossRefGoogle Scholar
  7. Burnett, L.J., Muller, B.H.: Deuteron quadrupole coupling constants in three solid deuterated paraffin hydrocarbons: Ethane-d6, butane-d10, and hexane-d14. J. Chem. Phys. 55, 5829–5831 (1971).CrossRefGoogle Scholar
  8. Chan, S.I., Feigenson, G.W., Seiter, C.H.A.: Nuclear relaxation studies of lecithin bilayers. Nature 231, 110–112(1971).PubMedCrossRefGoogle Scholar
  9. Chan, S.I., Seiter, C.H.A., Feigenson, G.W.: Anisotropic and restricted molecular motion in lecithin bilayers. Biochem. Biophys. Res. Commun. 46, 1488–1492 (1972).PubMedCrossRefGoogle Scholar
  10. Cullis, R.P.: Lateral diffusion rates of phosphatidylcholine in vesicle membranes: Effects of cholesterol and hydrocarbon phase transitions. FEBS Lett. 70, 223–228 (1976).PubMedCrossRefGoogle Scholar
  11. Devaux, P., McConnell, H.M.: Lateral diffusion in spin-labeled phosphatidylcholine multilayers. J. Am. Chem. Soc. 94, 4475–4481 (1972).PubMedCrossRefGoogle Scholar
  12. Edidin, M.: Rotational and translational diffusion in membranes. Annu. Rev. Biophys. Bioeng. 3, 179–201 (1974).PubMedCrossRefGoogle Scholar
  13. Farrar, T.C., Becker, E.D.: Pulse and Fourier Transform NMR. New York: Academic Press 1971.Google Scholar
  14. Feigenson, G.W., Chan, S.I.: Nuclear magnetic resonance relaxation behavior of lecithin multilayers. J. Am. Chem. Soc. 96, 1312–1319 (1974).PubMedCrossRefGoogle Scholar
  15. Feigenson, G.W., Meers, P.R., Kingsley, P.B.: NMR observation of gramicidin A in phosphatidylcholine vesicles. Biochim. Biophys. Acta 471, 487–491 (1977).PubMedCrossRefGoogle Scholar
  16. Finer, E.G.: Calculation of molecular motional correlation times from linewidths in nuclear magnetic resonance spectra of aggregated systems. Effects of particle size on spectra of phospholipid dispersions. J. Magn. Reson. 13, 76–86 (1974).CrossRefGoogle Scholar
  17. Finer, E.G., Flook, A.G., Hauser, H.: Mechanism of sonication of aqueous egg yolk lecithin dispersions and nature of the resultant particles. Biochim. Biophys. Acta 260, 49–58 (1972a).PubMedGoogle Scholar
  18. Finer, E.G., Flook, A.G., Hauser, H.: The nature and origin of the NMR spectrum of unsonicated and sonicated aqueous egg yolk lecithin dispersions. Biochim. Biophys. Acta 260, 59–69 (1972b).PubMedGoogle Scholar
  19. Fisher, R.W., James, T.L.: Lateral diffusion of the phospholipid molecules in dipalmitoylphosphati-dylcholine Mayers. An Investigation using nuclear spin relaxation in the rotating frame. Biochemistry 27, 1177–1183 (1978).CrossRefGoogle Scholar
  20. Franks, N.P.: Structural analysis of hydrated egg lecithin and cholesterol bilayers. I. X-ray diffraction. J. Mol. Biol. 100, 345–358 (1976).PubMedCrossRefGoogle Scholar
  21. Gaily, H.-U., Niederberger, W., Seelig, J.: Conformation of the choline head group in bilayers of dipalmitoyl-3-sn-phosphatidylcholine. Biochemistry 14, 3647–3652 (1975).CrossRefGoogle Scholar
  22. Gent, M.P.N., Prestegard, J.H.: Comparison of 13C spin lattice relaxation times in phospholipid vesicles and multilayers. Biochem. Biophys. Res. Commun. 58, 549–555 (1974).PubMedCrossRefGoogle Scholar
  23. Godici, P.E., Landsberger, F.R.: The dynamic structure of lipid membranes. A 13C nuclear magnetic resonance study using spin labels. Biochemistry 13, 362–368 (1974).PubMedCrossRefGoogle Scholar
  24. Griffin, R.G.: Observation of the effect of water on 31P nuclear magnetic resonance spectra of dipal-mitoyllecithin. J. Am. Chem. Soc. 98, 851–853 (1976).PubMedCrossRefGoogle Scholar
  25. Habercorn, R.A., Herzfeld, J., Griffin, R.G.: High resolution 31P and 13C nuclear magnetic resonance spectra of unsonicated model membranes. J. Am. Chem. Soc. 100, 1296–1298 (1978).CrossRefGoogle Scholar
  26. Horwitz, A.F., Horsley, W.J., Klein, M.P.: Magnetic resonance studies on membrane and model membrane systems: Proton magnetic relaxation rates in sonicated lecithin dispersions. Proc. Natl. Acad. Sci. USA 69, 590–593 (1972).PubMedCrossRefGoogle Scholar
  27. Horwitz, A.F., Michaelson, D., Klein, M.P.: Magnetic resonance studies on membrane and model membrane systems. III. Fatty acid motions in aqueous lecithin dispersions. Biochim. Biophys. Acta 298, 1–7 (1973).PubMedCrossRefGoogle Scholar
  28. Hubbell, W.L., McConnell, H.M.: Molecular motion in spin-labeled phospholipids and membranes. J. Am. Chem. Soc. 93, 314–326 (1971).PubMedCrossRefGoogle Scholar
  29. James, T.L.: Nuclear magnetic Resonance in Biochemistry, Chap. 4. New York: Academic Press 1975.Google Scholar
  30. Jost, P., Waggoner, A.S., Griffin, O.H.: Spin labeling and membrane structure. Structure and function of biological membranes (ed. Rothfield, L.), pp. 83–144. New York: Academic Press 1971.Google Scholar
  31. Khetrapal, C.L., Kunwar, A.C., Tracey, A.S., Diehl, P.: Lyotropic Liquid Crystals. NMR Basic Principles and Progress (eds. Diehl, P., Fluck, E., Kosfeld, R.), Vol. 9, p. 5. Berlin-Heidelberg-New York: Springer 1975.Google Scholar
  32. Kohler, S.J., Klein, M.P.: 31P Nuclear magnetic resonance. Chemical shielding tensors of phospho-rylethanolamine, lecithin, and related compounds: Applications to head-group motion in model membranes. Biochemistry 15, 967–973 (1976).PubMedCrossRefGoogle Scholar
  33. Kohler, S.J., Klein, M.P.: Orientation of phospholipid head groups in bilayers and membranes determined from 31P nuclear magnetic resonance shielding tensors. Biochemistry 16, 519–526 (1977).PubMedCrossRefGoogle Scholar
  34. Kroon, P.A., Kainosho, M., Chan, S.I.: The state of molecular motion of cholesterol in lecithin bilayers. Nature 256, 582–584 (1975).PubMedCrossRefGoogle Scholar
  35. Kroon, P.A., Kainosho, M., Chan, S.I.: Proton magnetic resonance studies of lipid bilayer membranes. Experimental determination of inter- and intramolecular relaxation rates in sonicated phosphatidylcholine bilayer vesicles. Biochim. Biophys. Acta 433, 282–293 (1976).Google Scholar
  36. Lee, A.G., Birdsall, N.J.M., Metcalf, J.C.: Nuclear magnetic relaxation and the biological membrane. Methods Membr. Biol. 2, 1–156 (1974).Google Scholar
  37. Lichtenberg, D., Petersen, N.O., Girardet, J.-L., Kainosho, M., Kroon, P.A., Seiter, C.H.A., Feigen-son, G.W., Chan, S.I.: The interpretation of proton magnetic resonance linewidths for lecithin dispersions. Effect of particle size and chain packing. Biochim. Biophys. Acta 382, 10–21 (1975).PubMedCrossRefGoogle Scholar
  38. Lindblom, G., Wennerström, H., Arvidson, G., Lindman, B.: Lecithin translational diffusion studied by pulsed nuclear magnetic resonance. Biophys. J. 16, 1287–1295 (1976).PubMedCrossRefGoogle Scholar
  39. Lindsey, H., Petersen, N.O., Chan, S.I.: Physicochemical characterization of 1,2-di-phytanoyl-sn-glycerol-3-phosphorylcholine in model membrane systems. Biochim. Biophys. Acta 555, 147–167 (1979).PubMedCrossRefGoogle Scholar
  40. Longmuir, K.J., Dahlquist, F.W.: Direct spectroscopic observation of inner and outer hydrocarbon chains of lipid bilayer vesicles. Proc. Natl. Acad. Sci. USA 73, 2716–2719 (1976).PubMedCrossRefGoogle Scholar
  41. Longmuir, K.J., Capaldi, R.A., Dahlquist, F.W.: Nuclear magnetic resonance studies of lipid-protein interactions. A model of the dynamics and energetics of phosphatidylcholine bilayers that contain cytochrome c oxidase. Biochemistry 16, 5746–5755 (1977).PubMedCrossRefGoogle Scholar
  42. McFarland, B.G., McConnell, H.M.: Bent fatty acid chains in lecithin bilayers. Proc. Natl. Acad. Sci. USA 68, 1274–1278(1971).PubMedCrossRefGoogle Scholar
  43. Michaelson, D.M., Horwitz, A.F., Klein, M.P.: Transbilayer asymmetry and surface homogeneity of mixed phospholipids in cosonicated vesicles. Biochemistry 12, 2637–2645 (1973).PubMedCrossRefGoogle Scholar
  44. Niederberger, W., Seelig, J.: Phosphorus-31 chemical shift anisotropy in unsonicated phospholipid bilayers. J. Am. Chem. Soc. 98, 3704–3706 (1976).CrossRefGoogle Scholar
  45. Petersen, N.O., Chan, S.I.: More on the motional state of lipid bilayer membranes: Interpretation of order parameters obtained from nuclear magnetic resonance. Biochemistry 16, 2657–2667 (1977).PubMedCrossRefGoogle Scholar
  46. Petersen, N.O., Kroon, P.A., Kainosho, M., Chan, S.I.: Thermal phase transitions in deuterated lecithin bilayers. Chem. Phys. Lipids 14, 343–349 (1975).PubMedCrossRefGoogle Scholar
  47. Pirs, J., Ukleja, P., Doane, J.W.: NMR in rapidly rotating samples or nematic liquid crystals. Phys. Rev. A 14, 414–423 (1976).CrossRefGoogle Scholar
  48. Racker, E.: Reconstitution of cytochrome oxidase vesicles and conferral of sensitivity of energy transfer inhibitors. J. Membr. Biol. 10, 221–235 (1972).PubMedCrossRefGoogle Scholar
  49. Razin, Shmuel: Reconstitution of biological membranes. Biochim. Biophys. Acta 265, 241–296 (1972).PubMedGoogle Scholar
  50. Saupe, A.: Das Protonenresonanzspektrum von orientiertem Benzol in nematisch-kristallinflüssiger Lösung. Z. Naturforsch. 20a, 572–580 (1965).Google Scholar
  51. Schempp, E., Bray, P.J.: Nuclear quadrupole Resonance spectroscopy. In: Physical Chemistry an Advanced Treatise (eds. Eyring, H., Henderson, D., Jost, W.), Vol. 4, Chap. II. New York-San Francisco: Academic Press 1970.Google Scholar
  52. Schindler, H., Seelig, J.: Deuterium-magnetische Resonanzspektroskopie an spezifisch deuterierten flüssigen Kristallen. Ber. Bunsenges. Phys. Chem. 78, 947–949 (1974).Google Scholar
  53. Seelig, J.: Deuterium magnetic resonance: Theory and application to lipid membranes. Q. Rev. Biophys. 10, 353–418 (1977).PubMedCrossRefGoogle Scholar
  54. Seelig, J., Gaily, H.-U.: Investigation of phosphatidylethanolamine bilayers by deuterium and phosphorus-31 nuclear magnetic resonance. Biochemistry 15, 5199–5204 (1976).PubMedCrossRefGoogle Scholar
  55. Seelig, J., Niederberger, W.: Deuterium-labeled lipids as structural probes in liquid crystalline bilayers. A Deuterium magnetic resonance study. J. Am. Chem. Soc. 96, 2069–2072 (1974).CrossRefGoogle Scholar
  56. Seelig, J., Seelig, A.: Deuterium magnetic resonance studies of phospholipid bilayers. Biochem. Biophys. Res. Commun. 57, 406–411 (1974).PubMedCrossRefGoogle Scholar
  57. Seelig, J., Gaily, H.-U., Wohlgemuth, R.: Orientation and flexibility of the choline head group in phosphatidylcholine bilayers. Biochim. Biophys. Acta 467, 109–119 (1977).PubMedCrossRefGoogle Scholar
  58. Seiter, C.H.A., Chan, S.I.: Molecular motion in lipid bilayers. A nuclear magnetic resonance study. J. Am. Chem. Soc. 95, 7541–7553 (1973).CrossRefGoogle Scholar
  59. Sheetz, M.P., Chan, S.I.: Effect of sonication on the structure of lecithin bilayers. Biochemistry 11, 4573–4581 (1972).PubMedCrossRefGoogle Scholar
  60. Singer, S.J., Nicolson, G.L.: The fluid mosaic model of cell membranes. Science 175, 720–731 (1972).PubMedCrossRefGoogle Scholar
  61. Stockton, G.W., Polnaszek, C.F., Leitch, L.G., Tulloch, A.P., Smith, I.P.C.: A study of mobility and order in model membranes using 2H NMR relaxation rates and quadrupole splittings of specifically deuterated lipids. Biochem. Biophys. Res. Commun. 60, 844–850 (1974).PubMedCrossRefGoogle Scholar
  62. Stockton, G.W., Polnaszek, C.F., Tulloch, A.P., Hasan, F., Smith, I.P.C.: Molecular motion in single-bilayer vesicles and multilamellar dispersions of egg lecithin and lecithin-cholesterol mixtures. A deuterium magnetic resonance study of specifically labeled lipids. Biochemistry 15, 954–966 (1976).PubMedCrossRefGoogle Scholar
  63. Stoll, M.E., Vega, H.J., Vaughn, R.W.: Explicit Demonstration of spinor character for a spin-1/2 nucleus via NMR interferometry. Phys. Rev. A 16, 1521–1524 (1977a).CrossRefGoogle Scholar
  64. Stoll, M.E., Vega, A.J., Vaughn, R.W.: Double resonance interferometry: Relaxation times for dipolar forbidden transitions and off resonance effects in an AX spin system. J. Chem. Phys. 67, 2029–2038 (1977b).CrossRefGoogle Scholar
  65. Tiddy, G.J.T.: N.M.R. of liquid crystals and micellular solution. Nucl. Magn. Reson. (Specialist Periodical Reports) 4, 233–252 (1975).Google Scholar
  66. Tiddy, G.J.T.: N.M.R. of liquid crystals and micellular solutions. Nucl. Magn. Reson. (Specialist Periodical Reports) 6, 207–232 (1977).Google Scholar
  67. Träuble, H., Sackman, E.: Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. III. Structure of a steroid-lecithin system below and above the lipid-phase transition. J. Am. Chem. Soc. 94, 4499–4510 (1972).PubMedCrossRefGoogle Scholar
  68. Urbina, J., Waugh, J.S.: Proton-enhanced 13C nuclear magnetic resonance of lipids and biomembranes. Proc. Natl. Acad. Sci. USA 71, 5062–5067 (1974).PubMedCrossRefGoogle Scholar
  69. Waugh, J.S., Huber, L.M., Haeberlen, U.: Approach to high-resolution NMR in solids. Phys. Rev. Lett. 20, 180–182(1968).CrossRefGoogle Scholar
  70. Wennerström, H.: Proton nuclear magnetic resonance lineshapes in lamellar liquid crystals. Chem. Phys. Lett. 18, 41–44 (1973).CrossRefGoogle Scholar
  71. Wennerström, H., Lindblom, G.: Biological and model membranes studied by nuclear magnetic resonance of spin one half nuclei. Q. Rev. Biophys. 10, 67–96 (1977).PubMedCrossRefGoogle Scholar
  72. Wennerström, H., Ulmius, J.: Proton NMR bandshapes in phospholipid bilayer vesicles. J. Magn. Reson. 25, 431–435(1976).Google Scholar
  73. Woessner, D.E.: Spin relaxation in a two spin system undergoing anisotropic reorientation. J. Chem. Phys. 36, 1–4 (1962).CrossRefGoogle Scholar
  74. Worcester, D.L., Franks, N.P.: Structural analysis of hydrated egg lecithin and cholesterol bilayers. II. Neutron diffraction. J. Mol. Biol. 100, 359–378 (1976).PubMedCrossRefGoogle Scholar
  75. Wu, E.-S., Jacobson, K., Papahadjopoulos, D.: Lateral diffusion in phospholipid multilayers measured by fluorescence recovery after photobleaching. Biochemistry 16, 3936–3941 (1977).CrossRefGoogle Scholar
  76. Wu, S.H., McConnell, H.M.: Phase separations in phospholipid membranes. Biochemistry 14, 847–854 (1975).CrossRefGoogle Scholar
  77. Yeagle, P.L., Hutton, W.C., Huang, C., Martin, R.B.: Structure in the polar head group region of phospholipid bilayers: A 31P {1H} nuclear Overhauser effect study. Biochemistry 15, 2121–2124 (1976).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • S. I. Chan
    • 1
  • D. F. Bocian
    • 1
  • N. O. Petersen
    • 1
  1. 1.A.A. Noyes Laboratory of Chemical Physics (Contribution No. 5853)California Institute of TechnologyPasadenaUSA

Personalised recommendations