Advertisement

Properties of Electron Lenses

Part of the Topics in Current Physics book series (TCPHY, volume 18)

Abstract

A magnetic lens is defined as an axisymmetric magnetic field existing in a finite axial interval between two field-free regions. The effect of saturation of the shielding material on the axial field distribution is discussed. Parameters describing lens strength and field form are defined, and scaling laws discussed. Results of numerical field calculations are given together with analytical models for symmetrical and asymmetrical lens fields. Field models are presented for which the paraxial trajectory equation can be solved analytically. A review is given of the paraxial properties, such as focal lengths, focal positions and chromatic aberration coefficients, and their dependence on lens strength and gap-bore ratio defining their field form, as well as unified representations in which each of these dependences is approximately described by one single curve in which the lens size and the gap-bore ratio occur only in the horizontal and vertical scales. A classification of third-order aberrations is given together with their unified representations for the limiting case of high magnification.

Keywords

Spherical Aberration Focal Position Chromatic Aberration Pole Piece Magnetic Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3.0
    J. Barthère, J. Dugas, P. Durandeau: C.R. Acad. Sci. Paris 250, 3461–3463 (1960)Google Scholar
  2. 3.1
    S. Bertram: Proc. Inst. Radio Eng. N.Y. 28, 418–420 (1940);CrossRefGoogle Scholar
  3. S. Bertram: J. Appl. Phys. 13, 496–502 (1942)CrossRefMATHADSMathSciNetGoogle Scholar
  4. 3.2
    B. von Borries, F. Lenz, G. Opfer: Optik 10, 132–136 (1953)Google Scholar
  5. 3.3
    H. Bremmer: Optik 10, 1–4 (1953)Google Scholar
  6. 3.4
    L. Brillouin: C.R. Acad. Sci. Paris 183, 24–26 (1926)Google Scholar
  7. 3.4a
    K.A. Brookes, T. Mulvey, M.J. Wallington: Proc. 4th Eur. Reg. Conf. Electron Microscopy, Rome 1968, ed. by D.S. Bocciarelli ( Tipografia Poliglotta Vaticana, Rome 1968 ) Vol. I, pp. 165–166Google Scholar
  8. 3.5
    H. Busch: Ann. Phys. (Leipzig) 81, 974–993 (1926)ADSGoogle Scholar
  9. 3.6
    V.E. Cosslett: J. Sci. Instrum. 17, 259–264 (1940)CrossRefADSGoogle Scholar
  10. 3.7
    J. Dosse: Z. Phys. 117, 316–321 (1941)CrossRefMATHADSMathSciNetGoogle Scholar
  11. 3.8
    J. Dosse: Z. Phys. 117, 437–443, 722–753 (1941)CrossRefMATHADSMathSciNetGoogle Scholar
  12. 3.9
    M. Duchesne: C.R. Acad. Sci. Paris 228, 1407–1408 (1949)MATHGoogle Scholar
  13. 3.10
    J. Dugas, P. Durandeau, Ch. Fert: Rev. Opt. Theor. Instrum. 40, 277–305 (1961)Google Scholar
  14. 3.10a
    J. Dugas, P. Durandeau, B. Fagot: Proc. 2nd Eur. Reg. Conf. Electron Microscopy, Delft, 1960, Vol. I, ed. by A.L. Houwink, B.J. Spit ( De Neederlandse Vereiniging voor Electronenmicroscopie, Delft 1960 ) pp. 35–40Google Scholar
  15. 3.11
    P. Durandeau: J. Phys. Radium 16, 72S (1955)CrossRefGoogle Scholar
  16. 3.12
    P. Durandeau: Thesis, University of Toulouse; Ann. Fac. Sci. Univ. Toulouse Sci. Math. Sci. Phys. 21, 1–88 (1957)MathSciNetGoogle Scholar
  17. 3.13
    P. Durandeau, B. Fagot, J. Barthère, M. Laudet: J. Phys. Radium 20a, 80A - 90A (1959)Google Scholar
  18. 3.14
    P. Durandeau, Ch. Fert, P. Tardieu: C.R. Acad. Sci. Paris 246, 79–81 (1958)MATHGoogle Scholar
  19. 3.15
    A.B. El-Kareh, J.C.J. EI-Kareh: Electron Beams, Lenses and Optics (Academic, New York, London 1970 )Google Scholar
  20. 3.16
    W. Glaser: Z. Phys. 117, 285–315 (1941)CrossRefMATHADSMathSciNetGoogle Scholar
  21. 3.17
    W. Glaser, E. Lammel: Arch. Elektrotech. 37, 347–356 (1943)CrossRefMATHMathSciNetGoogle Scholar
  22. 3.18
    W. Glaser: Ann. Phys. (Leipzig) 7, 213–227 (1950)MATHADSMathSciNetGoogle Scholar
  23. 3.19
    W. Glaser: Grundlagen der Elektronenoptik ( Springer, Wien 1952 )MATHGoogle Scholar
  24. 3.20
    W. Glaser, O. Bergmann: Z. Angew. Math. Phys. 1, 363–379 (1950);CrossRefMATHMathSciNetGoogle Scholar
  25. W. Glaser, O. Bergmann: Z. Angew. Math. Phys. 2, 159–188 (1951)CrossRefMATHMathSciNetGoogle Scholar
  26. 3.21
    W. Glaser, H. Grümm: Österr. Ing. Arch. 6, 360–372 (1952)MATHGoogle Scholar
  27. 3.22
    F. Gray: Bell Syst. Techn. J. 18, 1–31 (1939)Google Scholar
  28. 3.23
    P. Grivet: C.R. Acad. Sci. Paris 233, 921–923 (1951);MATHGoogle Scholar
  29. P. Grivet: C.R. Acad. Sci. Paris 234, 73–75 (1952)MATHGoogle Scholar
  30. 3.24
    W.W. Hansen, D.L. Webster: Rev. Sci. Instrum. 7, 17–23 (1936)CrossRefADSGoogle Scholar
  31. 3.25
    M.B. Hesse: Proc. Phys. Soc. London B 63, 386–401 (1950)CrossRefADSGoogle Scholar
  32. 3.26
    O. Jandeleit, F. Lenz: Optik 16, 87–107 (1959)Google Scholar
  33. 3.27
    H. Jeffreys: Proc. London Math. Soc. (2), 28, 81–90 (1928);CrossRefGoogle Scholar
  34. H. Jeffreys: Proc. London Math. Soc. 33, 246–252 (1932)CrossRefGoogle Scholar
  35. 3.27a
    W. Kamminga, J.L. Verster, J.C. Francken: Optik 28, 442–461 (1968/1969)Google Scholar
  36. 3.28
    H.A. Kramers: Z. Phys. 39, 828–840 (1926)CrossRefADSGoogle Scholar
  37. 3.28a
    W. Kunath, W.D. Riecke, E. Ruska: Proc. 6th Int. Cong. Electron Microscopy, Kyoto, 1966, Vol. I, ed. by R. Uyeda (Maruzen, Tokyo 1966 ) pp. 139–140Google Scholar
  38. 3.29
    G. Langner, F. Lenz: Optik 11, 171–180 (1954)Google Scholar
  39. 3.30
    F. Lenz: Z. Angew. Phys. 2, 337–340 (1950)Google Scholar
  40. 3.31
    F. Lenz: Optik 7, 243–253 (1950)Google Scholar
  41. 3.32
    F. Lenz: Z. Angew. Phys. 2, 448–453 (1950)Google Scholar
  42. 3.33
    F. Lenz: Ann. Phys. (Leipzig) 8, 124–128 (1950)MATHADSMathSciNetGoogle Scholar
  43. 3.34
    F. Lenz: Ann. Phys. (Leipzig) 9, 245–258 (1951)MATHADSGoogle Scholar
  44. 3.35
    F. Lenz: Optik 14, 72–82 (1957);Google Scholar
  45. F. Lenz: Proc. 1st Eur. Reg. Conf. Electron. Microscopy, Stockholm, 1956, ed. by F.S. Sjöstrand, J. Rhodin ( Almqvist and Wiksell, Stockholm, 1957 ) pp. 48–51Google Scholar
  46. 3.36
    G. Liebmann: Proc. Phys. Soc. London B62, 753–772 (1949)CrossRefADSGoogle Scholar
  47. 3.37
    G. Liebmann, E.M. Grad: Proc. Phys. Soc. London B64, 956–971 (1951)CrossRefADSGoogle Scholar
  48. 3.37a
    G. Liebmann: Proc. Phys. Soc. London B64, 972–977 (1951)CrossRefADSGoogle Scholar
  49. 3.38
    G. Liebmann: Proc. Phys. Soc. London B65, 188–192 (1952)MATHADSGoogle Scholar
  50. 3.39
    G. Liebmann: Proc. Phys. Soc. London B68, 679–686 (1955)CrossRefADSGoogle Scholar
  51. 3.40
    G. Liebmann: Proc. Phys. Soc. London B68, 682–685 (1955)CrossRefADSGoogle Scholar
  52. 3.41
    G. Liebmann: Proc. Phys. Soc. London B68, 737–745 (1955)CrossRefADSGoogle Scholar
  53. 3.42
    M. van Ments, J.B. Le Poole: Appl. Sci. Res. B1, 3–17 (1947)CrossRefGoogle Scholar
  54. 3.43
    T. Mulvey: Proc. Phys. Soc. London B66, 441–447 (1953)CrossRefADSGoogle Scholar
  55. 3.44
    T. Mulvey, M.J. Wallington: Repts. Prog. Phys. 36, 347–421 (1973)CrossRefADSGoogle Scholar
  56. 3.45
    F. Ollendorff: Berechnung magnetischer Felder ( Springer, Wien 1952 )MATHGoogle Scholar
  57. 3.45a
    W.D. Riecke, E. Ruska: Proc. 6th Int. Cong. Electron Microscopy, Kyoto, 1966, Vol. I, ed. by R. Uyeda (Maruzen, Tokyo 1966 ) pp. 19–20Google Scholar
  58. 3.46
    E. Ruska: Arch. Elektrotech. 38, 102–130 (1944)CrossRefGoogle Scholar
  59. 3.47
    G. Wentzel: Z. Phys. 38, 518–529 (1926)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • F. Lenz

There are no affiliations available

Personalised recommendations