Applications of Non-Homogeneous Markov Chains to Medical Studies

Nonparametric Analysis for Prospective and Retrospective Data
  • Ø. Borgan
Conference paper
Part of the Medizinische Informatik und Statistik book series (MEDINFO, volume 26)

Summary

Recently, AALEN (1978) has shown how the modern theory of stochastic processes may be a useful tool in developing nonparametric estimation and testing procedures of interest in medicine and related fields. The purpose of the present paper is to give a nontechnical review of his results and some extensions of these, and to discuss problems connected with a nonparametric analysis of retrospective data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AALEN, O.O., 1976: Nonparametric inference in connection with multiple decrement models. Scand. J. Statist. 3, 15-27.MATHMathSciNetGoogle Scholar
  2. AALEN, O.O., 1978: Nonparametric inference for a family of counting processes. Ann. Statist. 6, 701-726.CrossRefMATHMathSciNetGoogle Scholar
  3. AALEN, O.O., JOHANSEN, S., 1978: An empirical transition matrix for non-homogeneous Markov chains based on censored observations. Scand. J. Statist. 5, 141-150.MATHMathSciNetGoogle Scholar
  4. AALEN, O.O., BORGAN, Ø., KEIDING, N., THORMANN, J., 1980: Interaction between life history events. Nonparametric analysis for prospective and retrospective data in the presence of censoring. Scand. J. Statist., to appear.Google Scholar
  5. ALTSHULER, B., 1970: Theory for the measurement of competing risks in animal experiments. Math. Biosc. 6, 1-11.CrossRefMATHMathSciNetGoogle Scholar
  6. ANDERSEN, P.K., BORGAN, Ø., KEIDING, N., 1980: Nonparametric tests for comparisons of counting processes. Research Report, Statistical Research Unit, Copenhagen to appear.Google Scholar
  7. BRESLOW, N.E., 1975: Analysis of survival data under the proportional hazards model. Int. Stat. Rev. 43, 45-58.CrossRefGoogle Scholar
  8. COX, D.R., 1972: Regression models and life-tables. (With discussion) J. R. Statist. Soc. B 34, 187-220.MATHGoogle Scholar
  9. FELLER, W., 1966: An introduction to probability theory and its applications II. Wiley, N.Y.MATHGoogle Scholar
  10. GRENANDER, U., 1956: On the theory of mortality measurements. Skand. Aktuar. Tidskr. 39, 70-96 and 125-153.MathSciNetGoogle Scholar
  11. ΗOEΜ, J.M., 1969: Purged and partial Markov chains. Skand. Aktuar. Tidskr. 52, 147-155.Google Scholar
  12. ΗOEΜ, J.M., 1976: The statistical theory of demographic rates. A review of current developments. (With discussion) Scand. J. Statist. 3, 169-185.MathSciNetGoogle Scholar
  13. HYDE, J., 1977: Testing survival under right censoring and left truncation. Biometrika 64, 225-230.CrossRefMathSciNetGoogle Scholar
  14. KAPLAN, E.L., MEIER, P., 1958: Nonparametric estimation from incomplete observations. J. Am. Statist. Ass., 53, 457-481.CrossRefMATHMathSciNetGoogle Scholar
  15. PETO, R., PETO, J. , 1972: Asymptotically efficient rank invariant test procedures. (With discussion) J. Roy. Statist. Soc. A 135, 185-206.Google Scholar
  16. PETO, R., PIKE, M.C., 1973: Conservatism of the approximation Σ(0-E)2/E in the log rank test for survival or tumor incidence data. Biometrics 29, 579-584.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • Ø. Borgan
    • 1
  1. 1.Institute of MathematicsUniversity of OsloOslo 3Norway

Personalised recommendations