Advertisement

Some Comments on the GUHA Procedures

  • T. Havránek
Part of the Medizinische Informatik und Statistik book series (MEDINFO, volume 26)

Abstract

The GUHA procedures are procedures of exploratory data analysis joined by a philosophy of direct interpretability of results and exhaustive search in a defined set of possible statements about data. The appropriate mathematical theory uses means of computer science and mathematical logic. Computer implemented GUHA procedures work mainly with categorical data, but this restriction is not theoretically substantial. In the present paper the philosophy of GUHA procedures is illustrated by a particular GUHA procedure COLLAPS for identifying sources of dependence in two-way frequency tables. Some statistical aspects of this procedure are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BISHOP, Y. M., FIENBERG, S. E., HOLLAND, P.W., 1975: Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge, Ma.zbMATHGoogle Scholar
  2. BOARDMAN, T. J., 1977: Graphical Contributions to the χ2 Statistic for two-way Contingency Tables. Commun. Statist.-Theor. Meth. A6(15), 1437-1451.Google Scholar
  3. BROWN, M. B., 1977: Identification of Sources of Significance in Two-way Contingency Tables. Applied Statistics 23, 405-413.CrossRefGoogle Scholar
  4. DIXON, W. J., BROWN, M. B., 1977: BMDP-77 Biomedical Computer Programs. University of California Press, Los Angeles.Google Scholar
  5. GABRIEL, K.R., 1966: Simultaneous Test Procedures for Multiple Comparisons on Categorical Data. J. Amer. Statist. Assoc. 61, 1081-1096.CrossRefMathSciNetGoogle Scholar
  6. GABRIEL, K.R., 1969: Simultaneous Test Procedures-Some Theory of Multiple Comparisons. Ann. Math. Statist. 40, 224-250.CrossRefzbMATHMathSciNetGoogle Scholar
  7. HABERMAN, S. J., 1974: The Analysis of Frequency Data. University of Chicago Press, Chicago.zbMATHGoogle Scholar
  8. HÁJEK, P., 1973,1974: Automatic Listing of Important Observational Statements I-III. Kybernetika (Prague) 9,10, 187-205, 251-271, 95-124.MathSciNetGoogle Scholar
  9. HÁJEK, P., HAVEL, I., CHYTIL, M., 1966: The GUHA Method of Automatic Hypotheses Determination. Computing 1, 293-308.CrossRefzbMATHGoogle Scholar
  10. HÁJEK, P., HAVRÁNEK, T., 1978a: Mechanising Hypothesis Formation-Mathematical Foundations for a General Theory. Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
  11. HÁJEK, P., HAVRANEK, T., 1978b: The GUHA Method-its Aims and Techniques. Int. J. Man-Machine Studies 10, 3-22.CrossRefzbMATHGoogle Scholar
  12. HÁJEK, P., HAVRANEK, T., CHYTIL, M., 1980: Metoda GUHA automatického formování hypotéz. Academia, Praha (in print).Google Scholar
  13. HAVRÁNEK, T., 1978a: Enumeration Calculi and Rank Methods. Int. J. Man-Machine Studies 10, 59-66.CrossRefzbMATHGoogle Scholar
  14. HAVRÁNEK, T., 1978b: Some Aspects of Automatic Systems of Statistical Inference. Transactions of the European Meeting of Statisticians 1974. Academia, Prague, vol.A, 221-229.Google Scholar
  15. HAVRÁNEK, T., 1979: Approximate Distribution of the Maximum of 2 X 2 χ2 Statistics Derived from an R X C Contingency Table. The Second Prague Symposium on Asymptotic Statistics. Czech. Soc. Math. Phys., Prague, 211-212.Google Scholar
  16. HAVRÁNEK, T., POKORNÝ, D., 1978: GUHA-Style Processing of Mixed Data. Int. J. Man-Machine Studies 10, 47-58.CrossRefzbMATHGoogle Scholar
  17. HAVRÁNEK, T., VOSÁHLO, J., 1978: A GUHA Procedure with Correlational Quantifiers. Int. J. Man-Machine Studies 10, 67-74.CrossRefzbMATHGoogle Scholar
  18. HOLM, S., 1979: A Simple Sequentially Rejective Multiple Test Procedure. Scandnavian J. Statist. 6, 65-70.zbMATHMathSciNetGoogle Scholar
  19. LEHMACHER, W., 1980: Die Konfigurationsfrequenzanalyse qualitativer Daten als explorative Methode, (in this volume)Google Scholar
  20. POKORNÝ, D., 1978: The GUHA Method and Desk Calculators. Int. J. Man-Machine Studies 10, 75-86.CrossRefGoogle Scholar
  21. POKORNY, D., HAVRÁNEK, T., 1978: On some Procedures for Identifying Sources of Dependence in Contingency Tables. COMPSTAT 1978, Physica-Verlag, Wien, 221-227.Google Scholar
  22. SNEE, R. D., 1974: Graphical Display of Two-way Contingency Tables. Amer. Statistician 28, 9-12.CrossRefzbMATHGoogle Scholar
  23. SUGUIRA, N., OTAKE, M., 1973: Approximate Distribution of the Maximum of C-1 χ2 Statistics (2 X 2) Derived from an 2 X C Contingency Table. Comunn. Statist. 1, 9-16.CrossRefGoogle Scholar
  24. WERMUTH, N., WEHNER, T., GÖNNER, H., 1976: Finding Condensed Descriptions for Multidimensional Data. Computer Programs in Biomedine 6, 23-28.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • T. Havránek
    • 1
  1. 1.Center of BiomathematicsCzechoslovak Academy of SciencesPraha 4Czech Republic

Personalised recommendations