Skip to main content

Fluorescent tRNA Derivatives and Ribosome Recognition

  • Chapter
Chemical Recognition in Biology

Part of the book series: Molecular Biology, Biochemistry and Biophysics ((MOLECULAR,volume 32))

Abstract

The interactions of tRNA’s with aminoacyl-tRNA synthetases and ribosomes have been studied rather extensively using a variety of approaches (Rich and RajBhandary 1976; Altaian 1978; Schimmel et al. 1979). For a number of years we have investigated the chemistry of introducing fluorescent groups into tRNA in order to use the fluorescent tRNA’s as tools in the study of aminoacyl-tRNA synthetase and ribosome recognition (Wintermeyer and Zachau 1971, 1979). The procedure eventually applied allows the specific replacement of odd bases in internal positions of the tRNA molecule with fluorescent dyes. The replacement basically involves a two-step reaction: a ribosylic aldehyde group is created in the tRNA by selective excision of a base which subsequently can be condensed with a fluorophor possessing either a primary amino or a hydrazino group (Fig. 1). For the experiments described below fluorescent derivatives of tRNAPhe (yeast) have been used in which wybutine (position 37, next to the anticodon) or dihydrouracil (positions 16 or 17 in the D-loop) had been replaced with ethidium (Etd) or proflavin (Prf). Upon modification the tRNAPhe retained its activity in the partial reactions of protein synthesis, indicating that the essential elements of the native structure are not disturbed by insertion of the dyes. In support of this conclusion, the direct structural investigation of tRNA PhePrf by NMR spectroscopy has shown that the insertion of Prf reverses the substantial changes of the spectrum which are introduced by the excision of wybutine from tRNAPhe (Wong et al. 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman S (ed) (1978) Transfer RNA. MIT Press, Cambridge/Mass London

    Google Scholar 

  • Beardsley L, Cantor CR, Tao T (1970) Studies on the conformation of the anticodon loop of phenylalanine transfer ribonucleic acid. Effect of environment on the fluorescence of the Y base. Biochemistry 9: 3524–3532

    Article  PubMed  CAS  Google Scholar 

  • Ehrenberg M, Rigler R, Wintermeyer W (1979) On the structure and conformational dynamics of yeast phenylalanine-accepting transfer ribonucleic acid in solution. Biochemistry 18: 4588–4599

    Article  PubMed  CAS  Google Scholar 

  • Fairclough RH, Cantor CR, Wintermeyer W, Zachau HG (1979) Fluorescence studies of the binding of a yeast tRNAPhe derivative to Escherichia coli ribosomes. J Mol Biol 132: 557–573

    Article  PubMed  CAS  Google Scholar 

  • Johnston PD, Redfield AG (1977) An NMR study of the exchange rates for protons involved in the secondary and tertiary structure of yeast tRNAPhe. Nucleic Acids Res 4: 3599–3615

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG, Rigler R, Ehrenberg M, Blomberg C (1975) Allosteric mechanism for codon-depen-dent tRNA selection on ribosomes. Proc Natl Acad Sci USA 72: 4248–4251

    Article  PubMed  CAS  Google Scholar 

  • Ladner JE, Jack A, Robertus JD, Brown RS, Rhodes D, Clark BFC, Klug A (1975) Structure of yeast phenylalanine transfer RNA at 2.5 A resolution. Proc Natl Acad Sci USA 72: 4414–4418

    Article  PubMed  CAS  Google Scholar 

  • Ninio J (1973) Recognition in nucleic acids and the anticodon families. Prog Nucleic Acid Res Mol Biol 13: 301–337

    Article  PubMed  CAS  Google Scholar 

  • Odom OW, Hardesty B, Wintermeyer W, Zachau HG (1975) Efficient polyphenylalanine synthesis with proflavine and ethidium labeled tRNAPhe from yeast in the reticulocyte ribosomal system. Biochim Biophys Acta 378: 159–163

    PubMed  CAS  Google Scholar 

  • Olson T, Fournier MJ, Langley KH, Ford NC (1976) Detection of a major conformational change in transfer ribonucleic acid by laser light scattering. J Mol Biol 102: 193–203

    Article  PubMed  CAS  Google Scholar 

  • Pachmann U, Cronvall E, Rigler R, Hirsch R, Wintermeyer W, Zachau HG (1973) On the specifity of interactions between transfer ribonucleic acids and aminoacyl-tRNA synthetases. Eur J Bio-chem 39: 265–273

    CAS  Google Scholar 

  • Quigley GJ, Wang AHJ, Seeman NC, Suddath FL, Rich A, Sussman JL, Kim SH (1975) Hydrogen bonding in yeast phenylalanine transfer RNA. Proc Natl Acad Sci USA 72: 4866–4870

    Article  PubMed  CAS  Google Scholar 

  • Rich A, RajBhandary UL (1976) Transfer RNA: molecular structure, sequence and properties. Annu Rev Biochem 45: 805–860

    Article  PubMed  CAS  Google Scholar 

  • Rigler R, Ehrenberg M, Wintermeyer W (1977) Structural dynamics of tRNA — a fluorescence relaxation study of tRNA(Stack). In: Molecular biology biochemistry biophysics, vol 24, pp 219–244. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Robertson JM, Kahan M, Wintermeyer W, Zachau HG (1977) Interactions of yeast tRNAPhe with ribosomes from yeast and E. coli. Eur J Biochem 72: 117–125

    Article  PubMed  CAS  Google Scholar 

  • Schimmel P, Söll D, Abelson J (eds) Transfer RNA. Cold Spring Harbor Laboratory

    Google Scholar 

  • Schleich HG, Wintermeyer W, Zachau HG (1978) Replacement of wybutine by hydrazines and its effect on the active conformation of yeast tRNAPhe. Nucl Acids Res 5: 1701 – 1713

    Article  PubMed  CAS  Google Scholar 

  • Schwarz U. Gassen HG (1977) Codon-dependent rearrangement of the tertiary structure of tRNAPhe from yeast. FEBS Lett 78: 267–270

    Article  PubMed  CAS  Google Scholar 

  • Wintermeyer W, Zachau HG (1971) Replacement of Y base, dihydrouracil and 7-methylguanine in tRNA by artificial odd bases. FEBS Lett 18: 214–218

    Article  PubMed  CAS  Google Scholar 

  • Wintermever W, Zachau HG (1975a) Tertiary structure interactions of 7-methylguanosine in yeast tRNAPhe as studied by borohydride reduction. FEBS Lett 58: 306–309

    Article  Google Scholar 

  • Wintermeyer W, Zachau HG (1975b) Characterization of fluorescent derivatives of tRNAPhe by experiments in the ribosomal system. Mol Biol (Russian) 9: 63–69

    CAS  Google Scholar 

  • Wintermeyer W, Zachau HG (1975b) Characterization of fluorescent derivatives of tRNAPhe by experiments in the ribosomal system. Mol Biol (English) 9: 49–53

    Google Scholar 

  • Wintermeyer W, Zachau HG (1979) Fluorescent derivatives of yeast tRNA. Eur J Biochem 98: 465–475

    Article  PubMed  CAS  Google Scholar 

  • Wintermeyer W, Robertson JM, Weidner H, Zachau HG (1979) Studies on tRNA conformation and ribosome interaction with fluorescent tRNA derivatives. In: Schimmel P, Söll D, Abelson J (eds) Transfer RNA, Part 1, pp 445–457. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Wong KL, Kearns DR, Wintermeyer W, Zachau HG (1975) NMR investigation of the effect of selective modifications in the anticodon loop on the conformation of yeast transfer RNA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Wintermeyer, W., Robertson, J.M., Zachau, H.G. (1980). Fluorescent tRNA Derivatives and Ribosome Recognition. In: Chapeville, F., Haenni, AL. (eds) Chemical Recognition in Biology. Molecular Biology, Biochemistry and Biophysics, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81503-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81503-4_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81505-8

  • Online ISBN: 978-3-642-81503-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics