Molecular Mechanism of Protein Biosynthesis and an Approach to the Mechanism of Energy Transduction

  • Y. Kaziro
Part of the Molecular Biology, Biochemistry and Biophysics book series (MOLECULAR, volume 32)

Abstract

In 1941 Fritz Lipmann wrote an article in Advances in Enzymology which is now regarded as a landmark in the history of biochemistry. In this review he contemplated his new concept that the phosphate bonds serve as general carriers in energy transformation and in biosynthesis. The concept of “phosphate bond energy” or “energy-rich phosphate bond” has promptly prevailed among biochemists, and since then much effort has been focused on the mechanism of “group transfer” reactions in which the phosphate bond energy is very often utilized for the synthesis of covalent bonds.

Keywords

Hydrolysis Codon Polypeptide Trypsin Thiol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai K, Kawakita M, Kaziro Y, Maeda T, Ohnishi S (1974a) Conformational transition in polypeptide elongation factor Tu as revealed by electron spin resonance. J Biol Chem 249: 3311–3313PubMedGoogle Scholar
  2. Arai K, Kawakita M, Nakamura S, Ishikawa I, Kaziro Y (1974b) Studies on the polypeptide elongation factors from E. coli. VI. Characterization of sulfhydryl groups in EF-Tu and EF-Ts. J Biochem (Tokyo) 76: 523–534Google Scholar
  3. Arai K, Arai T, Kawakita M, Kaziro Y (1975) Conformational transitions of polypeptide chain elongation factor Tu. I. Studies with hydrophobic probes. J Biochem (Tokyo) 77: 1095–1106Google Scholar
  4. Arai K, Nakamura S, Arai T, Kawakita M, Kaziro Y (1976a) Limited hydrolysis of the polypeptide chain elongation factor Tu by trypsin: Isolation and characterization of the polypeptide fragments. J Biochem (Tokyo) 79: 69–83Google Scholar
  5. Arai K, Maeda T, Kawakita M, Ohnishi S, Kaziro Y (1976b) Conformational transitions of polypeptide chain elongation factor Tu. II. Further studies by electron spin resonance. J Biochem (Tokyo) 80: 1047–1055Google Scholar
  6. Arai K, Arai T, Kawakita M, Kaziro Y (1977) Further studies on the properties of the polypeptide chain elongation factors Tu and Ts: Hydrogen-Tritium exchange, optical rotatory dispersion, and intrinsic fluorescence. J Biochem (Tokyo) 81: 1335–1346Google Scholar
  7. Arai N, Arai K, Kaziro Y (1975) Formation of a binary complex between elongation factor G and guanine nucleotides. J Biochem (Tokyo) 78: 243–246Google Scholar
  8. Arai N, Arai K, Maeda T, Ohnishi S, Kaziro Y (1976) Conformational transitions of polypeptide chain elongation factor G as determined by electron spin resonance. J Biochem (Tokyo) 80: 1057–1065Google Scholar
  9. Arai N, Arai K, Kaziro Y (1977a) Further studies on the interaction of the polypeptide chain elongation factor G with guanine nucleotides. J Biochem (Tokyo) 82: 687–694Google Scholar
  10. Arai N, Arai K, Nakamura S, Kaziro Y (1977b) Properties and function of the sulfhydryl group in the polypeptide chain elongation factor G from E. coli. J Biochem (Tokyo) 82: 695–702Google Scholar
  11. Arai T, Kaziro Y (1976) Effect of guanine nucleotides on the assembly of brain microtubules: Ability of 5′-guanylyl imidodiphosphate to replace GTP in promoting the polymerization of microtubules in vitro. Biochem Biophys Res Commun 69: 369–376PubMedCrossRefGoogle Scholar
  12. Arai T, Kaziro Y (1977) Role of GTP in the assembly of microtubules. J Biochem (Tokyo) 82: 1063–1071Google Scholar
  13. Benne R, Voorma HO (1972) Entry site of formylmethionyl-tRNA. FEBS Lett 20: 347–351PubMedCrossRefGoogle Scholar
  14. Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: Covalent modification of the adenylate cyclase system. Proc Natl Acad Sci USA 75: 2669–2673PubMedCrossRefGoogle Scholar
  15. Cassel D, Selinger Z (1976) Catacholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim Biophys Acta 452: 538–551PubMedGoogle Scholar
  16. Cassel D, Selinger Z (1977) Mechanism of adenylate cyclase activation by cholera toxin: Inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci USA 74: 3307–3311PubMedCrossRefGoogle Scholar
  17. Cassel D, Selinger Z (1978) Mechanism of adenylate cyclase activation through the β-adrenergic receptor: Catecholamine-induced displacement of bound GDP by GTP. Proc Natl Acad Sci USA 75: 4155–4159PubMedCrossRefGoogle Scholar
  18. Crane LJ, Miller DL (1974) Guanosine triphosphate and guanosine diphosphate as conformation determining molecules. Differential interaction of a fluorescent probe with the guanosine nucleotide complexes of bacterial elongation factor Tu. Biochemistry 13: 933–939PubMedCrossRefGoogle Scholar
  19. Dubnoff JS, Lockwood AH, Maitra U (1972) Studies on the role of guanosine triphosphate in polypeptide chain initiation in Escherichia coli. J Biol Chem 247: 2884–2894PubMedGoogle Scholar
  20. Furano AV (1977) The elongation factor Tu coded by the tufA gene of Escherichia coli K-12 is almost identical to that coded by the tufB gene. J Biol Chem 252: 2154–2157PubMedGoogle Scholar
  21. Gast WH, Leberman R, Schulz GE, Wittinghofer A (1976) Crystals of partially trypsin-digested elongation factor Tu. J Mol Biol 106: 943–950PubMedCrossRefGoogle Scholar
  22. Inoue-Yokosawa N, Ishikawa C, Kaziro Y (1974) The role of guanosine triphosphate in translocation reaction catalyzed by elongation factor G. J Biol Chem 249: 4321–4323PubMedGoogle Scholar
  23. Iwasaki K (1979) Peptide chain elongation in eukaryotic cells. Seikagaku (in Japanese) 51: 1–18Google Scholar
  24. Iwasaki K, Kaziro Y (1979) Polypeptide chain elongation factors from pig liver. In: Moldave K, Grossman L (eds) Methods in Enzymol, vol LX, pp 657–676. Academic Press, New YorkGoogle Scholar
  25. Jaskunas SR, Lindahl L, Nomura M, Burgess RR (1975) Identification of two copies of the gene for the elongation factor EF-Tu in E. coli. Nature 257: 458–462PubMedCrossRefGoogle Scholar
  26. Kaziro Y (1973) The role of GTP in the polypeptide elongation reaction in E. coli. In: Nakao M, Packer L (eds) Organization of energy transducing membranes, pp 187–200. University of Tokyo Press, TokyoGoogle Scholar
  27. Kaziro Y (1976) Studies on high-energy phosphate bonds: from biosynthetic to mechanochemical reactions. In: Kornberg A, Horecker BL, Cornudella L, Oro J (eds) Reflections on biochemistry in honour of Severo Ochoa, pp 85–94. Pergamon Press, Oxford New YorkGoogle Scholar
  28. Kaziro Y (1978) The role of guanosine 5’-triphosphate in polypeptide chain elongation. Biochim Biophys Acta 505: 95–127PubMedGoogle Scholar
  29. Kornberg A, Scott JF, Bertsch LL (1978) ATP utilization by rep protein in the catalytic separation of DNA strands at a replicating fork. J Biol Chem 253: 3298–3304PubMedGoogle Scholar
  30. Laursen RA, Nagarkatti S, Miller DL (1977) Amino acid sequence of elongation factor Tu. Characterization and alignment of the cyanogen bromide fragments and location of the cysteine residues. FEBS Lett 80: 103–106PubMedCrossRefGoogle Scholar
  31. Lipmann F (1941) Metabolic generation and utilization of phosphate bond energy. Adv Enzymol 1: 99–162Google Scholar
  32. Lucas-Lenard J, Lipmann F (1971) Protein biosynthesis. Annu Rev Biochem 40: 409–448PubMedCrossRefGoogle Scholar
  33. Miller DL, Weissbach H (1977) Factors involved in the transfer of aminoacyl-tRNA to the ribo-some. In: Weissbach H, Pestka S (eds) Molecular mechanisms of protein biosynthesis, pp 323–373. Academic Press, New YorkGoogle Scholar
  34. Miller DL, Nagarkatti S, Laursen RA, Parker J, Friesen JD (1978) A comparison of the activities of the products of the two genes for elongation factor Tu. Mol Gen Genet 159: 57–62PubMedCrossRefGoogle Scholar
  35. Mitchell P (1968) Chemiosmotic coupling and energy transduction. Glynn Research, BodminGoogle Scholar
  36. Miyajima A, Shibuya M, Kaziro Y (1979) Construction and characterization of the two hybrid ColEl plasmids carrying Escherichia coli tufB gene. FEBS Lett 102: 207–210PubMedCrossRefGoogle Scholar
  37. Motoyoshi K, Iwasaki K, Kaziro Y (1977) Purification and properties of polypeptide chain elongation factor-1βγ from pig liver. J Biochem 82: 145–155PubMedGoogle Scholar
  38. Nagata S, Iwasaki K, Kaziro Y (1977) Purification and properties of polypeptide chain elongation factor-1α from pig liver. J Biochem 82: 1633–1646PubMedGoogle Scholar
  39. Nakamura S, Arai K, Takahashi K, Kaziro Y (1975) Amino acid sequences of two sulfhydryl-con-taining tryptic peptides of the polypeptide chain elongation factor Tu. Biochem Biophys Res Commun 66: 1069–1077PubMedCrossRefGoogle Scholar
  40. Nakamura S, Arai K, Takahashi K, Kaziro Y (1977) Alignment of the tryptic fragments and location of sulfhydryl groups of the polypeptide chain elongation factor Tu. Biochem Biophys Res Commun 77: 1418–1424PubMedCrossRefGoogle Scholar
  41. Nomura M, Morgan EA, Jaskunas SR (1977) Genetics of bacterial ribosomes. Annu Rev. Genet 11: 297–347PubMedCrossRefGoogle Scholar
  42. Ohta S, Nakanishi M, Tsuboi M, Arai K, Kaziro Y (1977) Structural fluctuation of the polypeptide-chain elongation factor Tu. Eur J Biochem 78: 599–608PubMedCrossRefGoogle Scholar
  43. Post LE, Strycharz GD, Nomura M, Lewis H, Dennis PP (1979) Nucleotide sequence of the ribo-somal protein gene cluster adjacent to the gene for RNA polymerase subunit β in Escherichia coli. Proc Natl Acad Sci USA 76: 1697–1701PubMedCrossRefGoogle Scholar
  44. Pfeuffer T (1977) GTP-binding proteins in membranes and the control of adenylate cyclase activity. J Biol Chem 252: 7224–7234PubMedGoogle Scholar
  45. Pfeuffer T (1979) Guanine nucleotide-controlled interactions between components of adenylate cyclase. FEBS Lett 101: 85–89PubMedCrossRefGoogle Scholar
  46. Printz MP, Miller DL (1973) Evidence for conformational changes in elongation factor Tu induced by GTP and GDP. Biochem Biophys Res Commun 53: 149–156PubMedCrossRefGoogle Scholar
  47. Rodbell M, Birnbaumer L, Pohl SL, Krans HMJ (1971) The glucagon-sensitive adenyl cyclase system in plasma membrane of rat liver. V. An obligatory role of guanyl nucleotides in glucagon action. J Biol Chem 246: 1877–1882PubMedGoogle Scholar
  48. Scott JF, Eisenberg S, Bertsch LL, Kornberg A (1977) A mechanism of duplex DNA replication revealed by enzymatic studies of phage ϕX174: Catalytic strand separation in advance of replication. Proc Natl Acad Sci USA 74: 193–197PubMedCrossRefGoogle Scholar
  49. Shibuya M, Kaziro Y (1979) Studies on stringent control in a cell-free system. J Biochem (Tokyo) 86: 403–411Google Scholar
  50. Shibuya M, Nashimoto H, Kaziro Y (1979) Cloning of an EcoRI fragment carrying E. coli tufA gene. Molec Gen Genet170: 231–234PubMedCrossRefGoogle Scholar
  51. Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23: 394–401PubMedCrossRefGoogle Scholar
  52. Van de Klundert JAM, den Turk E, Borman AH, van der Meide PH, Bosch L (1977) Isolation and characterization of a mocimycin resistant mutant of Escherichia coli with an altered elongation factor EF-Tu. FEBS Lett 81: 303–307PubMedCrossRefGoogle Scholar
  53. Wade M, Laursen A, Miller DL (1975) Amino acid sequence of elongation factor Tu. Sequence of a region containing the thiol group essential for GTP binding. FEBS Lett 53: 37–39PubMedCrossRefGoogle Scholar
  54. Weisenberg RC, Deery WJ, Dickinson PJ (1976) Tubulin-nucleotide interactions during the polymerization and depolymerization of microtubules. Biochemistry 15: 4248–4254PubMedCrossRefGoogle Scholar
  55. Yokosawa H, Inoue-Yokosawa N, Arai K, Kawakita M, Kaziro Y (1973) The role of GTP hydrolysis in elongation factor Tu promoted binding of aminoacyl-tRNA to ribosomes. J Biol Chem 248: 375–377PubMedGoogle Scholar
  56. Yokosawa H, Kawakita M, Arai K, Inoue-Yokosawa N, Kaziro Y (1975) Binding of aminoacyl-tRNA to ribosomes promoted by elongation factor Tu: Further studies on the role of GTP hydrolysis. J Biochem (Tokyo) 77: 719–728Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1980

Authors and Affiliations

  • Y. Kaziro
    • 1
  1. 1.Institute of Medical ScienceUniversity of TokyoMinatoku, Takanawa, Tokyo 108Japan

Personalised recommendations