Skip to main content

DNA as a Target for a Protein Antibiotic: Molecular Basis of Action

  • Chapter

Part of the book series: Molecular Biology, Biochemistry and Biophysics ((MOLECULAR,volume 32))

Abstract

The antitumor antibiotic neocarzinostatin (NSC), isolated from the culture filtrates of Streptomyces carzinostaticus variant F-41 (Ishida et al. 1965), is an acidic single-chain polypeptide with a molecular weight of 10,700 (Meienhofer et al. 1972a). The protein has been purified to homogeneity and its amino acid sequence (Fig. 1) (Meienhofer et al. 1972a, b; Maeda et al. 1974; Samy et al. 1977) and physical properties (Maeda et al. 1973; Samy and Meienhofer 1974) have been determined. There are high degrees of homology of some regions of NCS and the protein antibiotics actinoxanthin (Khokhlov et al. 1969, 1976) and macromomycin (Sawyer et al. 1979). NCS exists in a tight, proteolysis-resistant conformation with an antiparallel β-pleated sheet structure (Samy et al. 1974). It possesses two reduction-resistant disulfide bridges and lacks methionine and histidine. The positions of the disulfides have not yet been unambiguously assigned. NCS contains two tryptophan residues in positions 46 (buried) and 79 and one buried tyrosine residue at position 32. Oxidation of tryptophan 79 does not result in loss of biological activity (Samy et al. 1974). Similarly, acylation of the amino groups (alanine 1 and lysine 20) does not affect the activity of NCS (Maeda 1974; Samy 1977). On the other hand, modification of the carboxyl groups results in loss of activity (Samy 1977). Further, spontaneous deamidation of asparagine 83 at a weakly acidic pH generates “preneocarzinostatin” which lacks biological activity (Maeda and Kuromizu 1977). The chemically deamidated compound is thought to be the same as the material isolated from culture filtrates that antagonizes NCS activity (Kikuchi et al. 1974).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beerman TA, Goldberg IH (1974) DNA strand scission by the antitumor protein neocarzinostatin. Biochem Biophys Res Commun 59: 1254–1261

    Article  PubMed  CAS  Google Scholar 

  • Beerman TA, Goldberg IH (1977) The relationship between DNA strandscission and DNA synthesis inhibition in He La cells treated with neocarzinostatin. Biochim Biophys Acta 475: 281–293

    PubMed  CAS  Google Scholar 

  • Beerman TA, Poon R, Goldberg IH (1977) Single-strand nicking of DNA in vitro by neocarzinostatin and its possible relationship to the mechanism of drug action. Biochim Biophys Acta 475: 294–306

    PubMed  CAS  Google Scholar 

  • Burger RM, Peisach J, Horwitz SB (1978) Effect of light and oxygen on neocarzinostatin stability and DNA-cleaving activity. J Biol Chem 253: 4830–4832

    PubMed  CAS  Google Scholar 

  • D’Andrea AD, Haseltine WA (1978) Sequence specific cleavage of DNA by the antitumor antibiotics neocarzinosatin and bleomycin. Proc Natl.Acad Sci USA 75: 3608–3612

    Article  PubMed  Google Scholar 

  • Ebina T, Ishida N (1975) Inhibition of formation of microtubular paracrystals in HeLa-S3 cells by neocarzinostatin. Cancer Res 35: 3705–3709

    PubMed  CAS  Google Scholar 

  • Ebina T, Ohtsuki K, Seto M, Ishida N (1975) Specific G2 block in HeLa-S3 cells by neocarzinostatin. Eur J Cancer 11: 155–158

    PubMed  CAS  Google Scholar 

  • Ebina T, Satski M, Ishida N (1977) Inhibition of surface immunoglobulin central capping of Daudi cells and cell spreading of HeLa-S3 cells by neocarzinostatin. Cancer Res 37: 4423–4429

    PubMed  CAS  Google Scholar 

  • Eisenstadt E, Wolf M, Goldberg IH (1979) Mutagenicity of neocarzinostatin in Escherichia coli and Salmonella typhimurium. Abstract for the Tenth Annual Meeting of the Environmental Mutagen Society. Environ Mutagenesis 1: 139

    Google Scholar 

  • Freifelder D (1968) Rate of Production of single-strand breaks in DNA by X-irradiation in situ. J Mol biol 35: 303–309

    Article  PubMed  CAS  Google Scholar 

  • Hatayama T, Goldberg IH (1979) DNA damage and repair in relation to cell killing in neocarzino-statin-treated HeLa cells. Biochim Biophys Acta 563: 59–71

    PubMed  CAS  Google Scholar 

  • Hatayama T, Goldberg IH, Takeshita M, Grollman AP (1978) Nucleotide specificity in DNA scission by neocarzinostatin. Proc Natl Acad Sci USA 75: 3603–3607

    Article  PubMed  CAS  Google Scholar 

  • Homma M, Koida T, Saito-Koide T, Kamo I, Seto M, Kumagai K, Ishida N (1970) Specific inhibition of the initiation of DNA synthesis in HeLa cells by neocarzinostatin. Prog Antimicrob Anticancer Chemother Proc IV Internat Congr Chemother 2: 410–415

    CAS  Google Scholar 

  • Ishida N, Miyazaki K, Kumagai K, Rikimaru M (1965) Neocarzinostatin, an antitumor antibiotic of high molecular weight. J Antibiot 18: 29–37

    Google Scholar 

  • Ishida R, Takahashi T (1976) In vitro release of thymine from DNA by neocarzinostatin. Biochim Biophys Res Commun 68: 256–261

    Article  CAS  Google Scholar 

  • Ishida R, Takahashi T (1978) Role of mercaptoethanol in in vitro DNA degradation by neocarzinostatin. Cancer Res 38: 2617–2620

    PubMed  CAS  Google Scholar 

  • Kappen LS, Goldberg IH (1977) Effect of neocarzinostatin-induced strand scission on the template activity of DNA for DNA polymerase I. Biochemistry 16: 479–485

    Article  PubMed  CAS  Google Scholar 

  • Kappen LS, Goldberg IH (1978a) Neocarzinostatin induction of DNA repair synthesis in HeLa cells and isolated nuclei. Biochim Biophys Acta 520: 481–489

    PubMed  CAS  Google Scholar 

  • Kappen LS, Goldberg IH (1978b) Activation and inactivation of neocarzinostatin-induced cleavage of DNA. Nucleic Acids Res 5: 2959–2967

    Article  PubMed  CAS  Google Scholar 

  • Kappen LS, Goldberg IH (1978c) Gaps in DNA inruced by neocarzinostatin bear 3′- and 5′-phos-phoryl termini. Biochemistry 17: 729–733

    Article  PubMed  CAS  Google Scholar 

  • Khokhlov AS, Cherches BZ, Reshetov PD, Smirnova GM, Sorokina IB, Prokoptzeva TA, Kolodits-kaya TA, Smirnov W, Navashin SM, Fomina IP (1969) Physico-chemical and biological studies on actinoxanthin, an antibiotic from Actinomyces globisporus 1131. J Antibiotic 22: 541–544

    CAS  Google Scholar 

  • Khokhlov AS, Reshetov PD, Chupova LA, Cherches BZ, Zhigis LS, Stoyachenko IA (1976) Chemical studies on actinoxanthin. J Antibiot 29: 1026–1034

    PubMed  CAS  Google Scholar 

  • Kohno M, Haneda I, Koyama Y, Kikuchi M (1974) Studies on the stability of antitumor protein, neocarzinostatin. I. Stability of solution of neocarzinostatin. Jap J Antibiot 27: 707–714

    CAS  Google Scholar 

  • Kikuchi M, Shoji M, Ishida N (1974) Pre-neocarzinostatin, a specific antagonist of neocarzinostatin. J Antibiot 27: 766–774

    PubMed  CAS  Google Scholar 

  • Kumagai K, Ono Y, Nishikawa T, Ishida N (1966) Cytological studies on the effect of neocarzinostatin on HeLa cells. J Antibiot 19: 69–74

    PubMed  CAS  Google Scholar 

  • Lazarus H, Raso V, Samy TSA (1977) In vitro inhibition of human leukemic cells (CCRF-CEM) by agarose-immobilized neocarzonostatin. Cancer Res 37: 3731–3736

    PubMed  CAS  Google Scholar 

  • Leenhouts HP, Chadwick KH (1978) The crucial role of DNA double-strand breaks in cellular radiobiological effects. Adv Radiat Biol 7: 55–101

    CAS  Google Scholar 

  • Maeda H (1974) Chemical and biological characterization of succinyl neocarzinostatin. J Antibiot 27: 303–311

    PubMed  CAS  Google Scholar 

  • Maeda H, Kuromizu K (1977) Spontaneous deamidation of a protein antibiotic, neocarzinostatin, at weakly acidic pH. J Biochem (Tokyo) 81: 25–35

    CAS  Google Scholar 

  • Maeda H, Shiraishi H, Onodera S, Ishida N (1973) Conformation of antibiotic protein, neocarzinostatin, studied by plane polarized infrared spectroscopy, circular dichroism and optical rotatory dispersion. Int J Pept Protein Res 5: 19–26

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Glaser CB, Czombos J, Meienhofer J (1974) Structure of the antitumor protein neocarzinostatin. Purification, amino acid composition, disulfide reduction, and isolation and composition of tryptic peptides. Arch Biochem Biophys 164: 369–378

    Article  PubMed  CAS  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74: 560–564

    Article  PubMed  CAS  Google Scholar 

  • Meienhofer J, Maeda H, Glaser CB, Czombos J, Kuromizu K (1972a) Primary structure of neocarzinostatin, an antitumor antibiotic. Science 178: 875–876

    Article  PubMed  CAS  Google Scholar 

  • Meienhofer J, Maeda H, Glaser CB, Czombos J (1972b) Structural studies on neocarzinostatin, an antitumor polypeptide antibiotic. In: Lande S (ed) Progress in peptide research, vol 2, pp 295–306. Gordon and Breach, New York

    Google Scholar 

  • Nakamura H, Ono K (1974) Growth inhibition of leukemic cells by neocarzinostatin-sepharose. Proc Jap Cancer Assoc 33rd Annual Meeting, p 112

    Google Scholar 

  • Napier MA, Holmquist B, Strydom DJ, Goldberg IH (1979) Neocarzinostatin: Spectral characterization and separation of a nonprotein chromophore. Biochem Biophys Res Commun 89: 635–642

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki K, Ishida N (1975a) Mechanism of DNA degradation induced by neocarzinostatin in Bacillus subtilis. J Antibiot 28: 229–236

    PubMed  CAS  Google Scholar 

  • Ohtsuki K, Ishida N (1975b) Neocarzinostatin-induced breakdown of deoxyribonucleic acid in HeLa-S3 cells. J Antibiot 28: 143–148

    PubMed  CAS  Google Scholar 

  • Ono Y, Watanabe Y, Ishida N (1966) Mode of action of neocarzinostatin: Inhibition of DNA synthesis and degradation of DNA in Saccina lutea. Bioehim Biophys Acta 119: 46–58

    CAS  Google Scholar 

  • Poon R, Beerman TA, Goldberg IH (1977) Characterization of DNA strand breakage in vitro by the antitumor protein neocarzinostatin. Biochemistry 16: 486–492

    Article  PubMed  CAS  Google Scholar 

  • Rao AP, Rao PN (1976) The cause of G2 arrest in CHO cells treated with anticancer drugs. J Natl Cancer Inst 57: 1139–1143

    PubMed  CAS  Google Scholar 

  • Samy TSA (1977) Neocarzinostatin: effect of modification of side chain amino and carboxyl groups on chemical and biological properties. Biochemistry 16: 5573–5578

    Article  PubMed  CAS  Google Scholar 

  • Samy TSA, Meienhofer J (1974) Chemical modification and physical studies of the antitumor protein neocarzinostatin. In: Bewley TA, Lin M, Ramachandran J (eds) Proceedings of the international workshop on hormones and proteins, San Francisco, 1974, pp 143–156. The Chinese Univ of Hon Kong, Hong Kong

    Google Scholar 

  • Samy TSA, Atreyi M, Maeda H, Meienhofer J (1974) Selective tryptophan oxidation in the antitumor protein neocarzinostatin and effects on conformation and biological activity. Biochemistry 15: 1007–1013

    Article  Google Scholar 

  • Samy TSA, Hu, J-M, Meienhofer J, Lazarus H, Johnson RK (1977) A facile method of purification of neocarzinostatin, an antitumor protein. J Natl Cancer Inst 58: 1765–1768

    PubMed  CAS  Google Scholar 

  • Sawada H, Tatsumi K, Sasada M, Shirakawa S, Nakamura T, Wakisaka G (1974) Effect of neocarzinostatin on DNA synthesis in L1210 cell. Cancer Res 34: 3341–3346

    PubMed  CAS  Google Scholar 

  • Sasada M, Sawada H, Nakamura T, Uchino H (1976) Caffeine potentiation of lethality of L-1210 cells treated with neocarzinostatin. Gann 67: 447–449

    PubMed  CAS  Google Scholar 

  • Sawyer TH, Guetzow K, Olson MOJ, Busch H, Prestayko AW, Crooke ST (1979) Amino terminal amino acid sequence of macromomycin, a protein antitumor antibiotic. Biochem Biophys Res Commun 86: 1133–1138

    Article  PubMed  CAS  Google Scholar 

  • Shoji J (1961) Preliminary studies on the isolation of carzinostatin complex and its characteristics. J Antibiotic 14: 27–33

    Google Scholar 

  • Sim S-K, Lown JW (1978) The mechanism of the neocarzinostatin-induced cleavage of DNA. Biochem Biophys Res Commun 81: 99–105

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi K, Nishioka H (1977) Effect of DNA repair systems on antibacterial and mutagenic activity of an antitumor protein, neocarzinostatin. Mutat Res 48: 195–204

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi K, Nakamura T, Wakisaka G (1974) Damage of mammalian cell DNA in vivo and in vitro induced by neocarzinostatin. Gann 65: 459–461

    PubMed  CAS  Google Scholar 

  • Tatsumi K, Sakane T, Sawada H, Shirakawa S, Nakamura T, Wakisaka G (1975) Unscheduled DNA synthesis in human lymphocytes treated with neocarzinostatin. Gann 66: 441–444

    PubMed  CAS  Google Scholar 

  • Tatsumi K, Tashima M, Shirakawa S, Nakamura T, Uchino H (1979) Enhancement by caffeine of neocarzinostatin cytotoxicity in murine leukemia L1210 cells. Cancer Res 39: 1623–1627

    PubMed  CAS  Google Scholar 

  • Tsuruo T, Satoh H, Ukita T (1971) Effect of the antitumor antibiotic neocarzinostatin on DNA synthesis in vitro. J Antibiot 24: 423–429

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Goldberg, I.H., Hatayama, T., Kappen, L.S., Napier, M.A. (1980). DNA as a Target for a Protein Antibiotic: Molecular Basis of Action. In: Chapeville, F., Haenni, AL. (eds) Chemical Recognition in Biology. Molecular Biology, Biochemistry and Biophysics, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81503-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81503-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81505-8

  • Online ISBN: 978-3-642-81503-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics