Recognition of Promoter Sequences by RNA Polymerases from Different Sources

  • Ch. Leib
  • H. Ernst
  • G. R. Hartmann
Part of the Molecular Biology, Biochemistry and Biophysics book series (MOLECULAR, volume 32)

Abstract

Some time ago Fritz Lipmann and his group have observed that a combination in vitro of ribosomal subunits and soluble proteins isolated from taxonomically very different microorganisms yields a hybrid system active in protein synthesis (Felicetti and Lipmann 1968; Gordon et al. 1969; Krisko et al. 1969; Lucas-Lennard and Lipmann 1966; Takeda and Lipmann 1966). Two conclusions may be drawn from these experiments: (1) the components of the molecular apparatus for protein biosynthesis in different microorganisms correspond to each other rather closely in function; (2) equivalent proteins of this system from different microorganisms must be structurally very similar at least in those regions which are required for the functional interaction of the components of the hybrid system. Otherwise mutual substitution would be difficult to understand. Obviously, evolution and diversification of microorganisms have not affected too heavily the kinship among the components of the machinery of protein biosynthesis.

Keywords

Agarose Electrophoresis Bacillus Polypeptide Polyacrylamide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bates DL, Perham RN, Coggins JR (1975) Methods for obtaining peptide maps of proteins on a subnanomole scale. Anal Biochem 68: 175–184PubMedCrossRefGoogle Scholar
  2. Burgess RR, Travers AA, Dunn JJ, Bautz EKF (1969) Factor stimulating transcription by RNA polymerase. Nature 221: 43–46PubMedCrossRefGoogle Scholar
  3. Champion AB, Prager EM, Wachter D, Wilson AC (1974) Microcomplementfixation. In: Wright CA (ed) Biochemical and immunological taxonomy of animals, pp 397–416. Academic Press, New York LondonGoogle Scholar
  4. Felicetti L, Lipmann F (1968) Comparison of amino acid polymerization factors isolated from rat liver and rabbit reticulocytes. Arch Biochem Biophys 125: 548–557PubMedCrossRefGoogle Scholar
  5. Fujiki H, Palm P, Zillig W, Calendar R, Sunshine M (1976) Identification of a mutation within the structural gene for the α subunit of DNA-dependent RNA polymerase of E. coli. Molec Gen Genet 145: 19–22PubMedCrossRefGoogle Scholar
  6. Gabain A von, Bujard H (1979) Interaction of Escherichia coli RNA polymerase with promoters of several coliphage and plasmid DNAs. Proc Natl Acad Sci USA 76: 189–193CrossRefGoogle Scholar
  7. Gordon J, Schweiger M, Krisko I, Williams CA (1969) Specificity and evolutionary divergence of the antigenic structure of the polypeptide chain elongation factors. J Bacteriol 100: 1–4PubMedGoogle Scholar
  8. Hartmann GR (1976) Austausch von Untereinheiten zwischen Enzymen aus verschiedenen Organismen in vitro: Enzymchimären. Angew Chem 88: 197–203;CrossRefGoogle Scholar
  9. Hartmann GR (1976) Austausch von Untereinheiten zwischen Enzymen aus verschiedenen Organismen in vitro: Enzymchimären. Angew Chem Int Ed Engl 15: 181–186PubMedCrossRefGoogle Scholar
  10. Higo K, Held W, Kahan L, Nomura M (1973) Functional correspondence between 30S ribosomal proteins of Escherichia coli and Bacillus stearothermophilus. Proc Natl Acad Sci USA 70: 944–948PubMedCrossRefGoogle Scholar
  11. Iida H, Ikehara K, Okada Y (1979) Differential transcription of fd RFI DNA by Caulobacter crescentus and Escherichia coli RNA polymerases. FEBS Lett 99: 346–350PubMedCrossRefGoogle Scholar
  12. Jones BB, Chan H, Rothstein S, Wells RD, Reznikoff WS (1977) RNA polymerase binding site in λplac5 DNA. Proc Natl Acad Sci USA 74: 4914–4918PubMedCrossRefGoogle Scholar
  13. Krisko I, Gordon J, Lipmann F (1969) Studies on the interchangeability of one of the mammalian and bacterial supernatant factors in protein biosynthesis. J Biol Chem 244: 6117–6123PubMedGoogle Scholar
  14. Lederboer AM, Hille J, Schilperoort RA (1978) An easy and efficient procedure for the isolation of pure DNA restriction fragments from agarose gels. Biochim Biophys Acta 520: 498–504Google Scholar
  15. Lill UI, Behrendt EM, Hartmann GR (1974) Intergeneric complementation of RNA polymerase subunits. In: Richter D (ed) Lipmann Symposium: Energy, regulation and biosynthesis in molecular biology, pp 377–383. de Gruyter, Berlin New YorkGoogle Scholar
  16. Lill UI, Behrendt EM, Hartmann GR (1975) Hybridization in vitro of subunits of the DNA-dependent RNA polymerase from Escherichia coli and Micrococcus luteus. Eur J Biochem 52: 411–420PubMedCrossRefGoogle Scholar
  17. Lill UI, Kniep-Behrendt EM, Bock L, Hartmann GR (1977) Purification and characterization of the DNA-dependent RNA polymerase and its subunit σ from Micrococcus luteus. Hoppe-Seyler’s Z Physiol Chem 358: 1591–1603PubMedCrossRefGoogle Scholar
  18. Lucas-Lennard J, Lipmann F (1966) Separation of three microbial amino acid polymerization factors. Proc Natl Acad Sci USA 55: 1562–1566CrossRefGoogle Scholar
  19. Ovchinnikov YuA, Lipkin VM, Modyanov NN, Chertov OYu, Smirnov YuV (1977) Primary structure of α-subunit of DNA-dependent RNA polymerase from Escherichia coli. FEBS Lett 76: 108–111PubMedCrossRefGoogle Scholar
  20. Peacock AC, Dingman CW (1968) Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry 7: 668–674PubMedCrossRefGoogle Scholar
  21. Sanger F, Air LM, Barrell BG, Brown NL, Coulson AR, Fiddes JC, Hutchinson CA III, Slocombe PM, Smith M (1977) Nucleotide sequence of bacteriophage ϕX 174 DNA. Nature 265: 687–695PubMedCrossRefGoogle Scholar
  22. Spiegelman GB, Whiteley HR (1978) Bacteriophage SP82 induced modifications of Bacillus subtilis RNA polymerase result in the recognition of additional RNA synthesis initiation sites on phage DNA. Biochem Biophys Res Commun 81: 1058–1065PubMedCrossRefGoogle Scholar
  23. Takeda M, Lipmann F (1966) Comparison of amino acid polymerization in B. subtilis and E. coli cell-free systems; hybridization of their ribosomes. Proc Natl Acad Sci USA 56: 1875–1882PubMedCrossRefGoogle Scholar
  24. Wiggs JL, Bush JW, Chamberlin MJ (1979) Utilization of promoter and terminator sites on bacteriophage T7 DNA by RNA polymerases from a variety of bacterial orders. Cell 16: 97–109PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1980

Authors and Affiliations

  • Ch. Leib
    • 1
  • H. Ernst
    • 1
  • G. R. Hartmann
    • 1
  1. 1.Institut für BiochemieLudwig-Maximilians-Universität MünchenMünchen 2Germany

Personalised recommendations