Regulation of Muscle Contraction by Ca Ion

  • S. Ebashi
  • Y. Nonomura
  • K. Kohama
  • T. Kitazawa
  • T. Mikawa
Part of the Molecular Biology, Biochemistry and Biophysics book series (MOLECULAR, volume 32)


There is no doubt that the contractile processes of every kind of muscle are solely regulated by Ca ion. The fundamental evidence for this concept was furnished by the laboratory of Professor Fritz Lipmann in 1959.


ATPase Activity Fiber Model Fast Skeletal Muscle Actomyosin ATPase Excitation Contraction Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aksoy MO, Williams D, Sharkey EM, Hartshorne DJ (1976) Relationship between Ca2+ sensitivity and phosphorylation of gizzard actomyosin. Biochem Biophys Res Commun 69: 35–41PubMedCrossRefGoogle Scholar
  2. Amphlett GW, Vanaman TC, Perry SV (1976) Effect of the troponin C-like protein from bovine brain (Brain Modulator Protein) on the Mg2+-stimulated ATPase of skeletal muscle actomyosin. FEBS Lett 72: 163–168PubMedCrossRefGoogle Scholar
  3. Berson G (1974) Ca2+, Sr2+ and Ba2+ sensitivity of tropomyosin-troponin complex from cardiac and fast skeletal muscles. In: Drabikowski W, Strzelecka-Golaszewska H, Carafoli E (eds) Calcium binding proteins, pp 197–201. PWN-Polish Scientific Publishers, WarszawaGoogle Scholar
  4. Bremel RD, Sobieszek A, Small JV (1977) Regulation of actin-myosin interaction in vertebrate smooth muscle. In: Stephens NL (ed) Biochemistry of smooth muscle, pp 533–549. Univ. Park Press, BaltimoreGoogle Scholar
  5. Casteels R, Godfraind T, Rüegg JD (1977) Excitation contraction coupling in smooth muscle. Elsevier/North-Holland, AmsterdamGoogle Scholar
  6. Chacko S, Conti MA, Adelstein RS (1977) Effect of phosphorylation of smooth muscle myosin on actin activation and Ca2+ regulation. Proc Natl Acad Sci USA 74: 129–133PubMedCrossRefGoogle Scholar
  7. Cheung WY (1970) Cyclic 3’,5’-nueleotide phosphodiesterase: Demonstration of an activator. Biochem Biophys Res Commun 38: 533–538PubMedCrossRefGoogle Scholar
  8. Ebashi S (1960) Calcium binding and relaxation in the actomyosin system. J Biochem 48: 150–151Google Scholar
  9. Ebashi S (1961) Calcium binding activity of vesicular relaxing factor, J Biochem 50: 236–244Google Scholar
  10. Ebashi S (1963) Third component participating in the superprecipitation of ‘Natural actomyosin’. Nature 22: 1010–1012CrossRefGoogle Scholar
  11. Ebashi S (1979) Ca2+ ion and muscle contraction. In: Stoclet JC (ed) Advances in pharmacology and therapeutics, vol III, pp 81–98. Pergamon Press, OxfordGoogle Scholar
  12. Ebashi S (1980) Regulation of muscle contraction. Proc R Soc London Ser B 207: 259–286CrossRefGoogle Scholar
  13. Ebashi S, Endo M (1968) Calcium ion and muscle contraction. Prog Biophys Mol Biol 18: 123–183PubMedCrossRefGoogle Scholar
  14. Ebashi S, Lipmann F (1962) Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J Cell Biol 14: 389–400PubMedCrossRefGoogle Scholar
  15. Ebashi S, Kodama A, Ebashi F (1968) Troponin, I. Preparation and physiological function. J Biochem 64: 465–477PubMedGoogle Scholar
  16. Ebashi S, Endo M, Ohtsuki I (1969) Control of muscle contraction. Q Rev Biophys 2: 351–384PubMedCrossRefGoogle Scholar
  17. Ebashi S, Nonomura Y, Toyo-oka T, Katayama E (1976) Regulation of muscle contraction by the calcium-troponin-tropomyosin system. In: Duncan CJ (ed) Calcium in biological systems; Symp. of the Soc. for Exp. Biol, vol XXX, pp 349–360. Cambridge Univ. Press, LondonGoogle Scholar
  18. Ebashi S, Mikawa T, Hirata M, Toyo-oka T, Nonomura Y (1977) Regulatory proteins in smooth muscle. In: Casteels R, Godfraind T, Rüegg JD (eds) Excitation contraction coupling in smooth muscle, pp 325–334. Elsevier/North-Holland, AmsterdamGoogle Scholar
  19. Ebashi S, Nonomura Y, Mikawa T, Hirata M, Saida K (1979) Regulatory mechanisms of muscle contraction. In: Hatano T, Sato H, Ishikawa H (eds) Cell motility, molecule and organization, pp 225–237. Univ. of Tokyo Press, TokyoGoogle Scholar
  20. Ikebe M, Aiba T, Onishi H, Watanabe S (1978) Calcium sensitivity of contractile protein from chicken gizzard muscle. J Biochem 83: 1643–1656PubMedGoogle Scholar
  21. Kakiuchi S, Yamazaki T, Nakajima H (1970) Properties of a heat stable phosphodiesterase activating factor isolated from brain extract. Proc Japan Acad 46: 587–592Google Scholar
  22. Kendrick-Jones J, Lehman W, Szent-Györgyi AG (1970) Regulation in molluscan muscles. J Mol Biol 54: 313–326PubMedCrossRefGoogle Scholar
  23. Kielley WW, Meyerhof O (1948) Studies on adenosinetriphosphatase of muscle. II. A new magnesium activated adenosinetriphosphatase. J Biol Chem 176: 591–601PubMedGoogle Scholar
  24. Kitazawa T (1976) Physiological significance of Ca uptake by mitochondria in the heart in comparison with that by cardiac sarcoplasmic reticulum. J Biochem 80: 1129–1147PubMedGoogle Scholar
  25. Kohama K (1979) Divalent cation binding properties of slow skeletal muscle troponin in comparison with those of cardiac and fast skeletal muscle troponins. J Biochem 86: 811–820PubMedGoogle Scholar
  26. Kohama K (1980) Role of the high affinity Ca binding site of troponin. J Biochem 88: 591–599PubMedGoogle Scholar
  27. Kumagai H, Ebashi S, Takeda F (1955) Essential relaxing factor in muscle other than myokinase and creatine Phosphokinase. Nature 176: 166–168PubMedCrossRefGoogle Scholar
  28. Marsh BB (1951) A factor modifying muscle fibre syneresis. Nature 167: 1065–1066PubMedCrossRefGoogle Scholar
  29. Mikawa T (1979) ‘Freezing’ of the calcium-regulated structures of gizzard thin filaments by glutar-aldehyde. J Biochem 85: 879–811PubMedGoogle Scholar
  30. Mikawa T, Toyo-oka T, Nonomura Y, Ebashi S (1977) Essential factor of gizzard ‘Troponin’ fraction. J Biochem 81: 273–275PubMedGoogle Scholar
  31. Mikawa T, Nonomura Y, Hirata M, Ebashi S, Kakiuchi S (1978) Involvement of an acidic protein in the regulation of smooth muscle contraction by the leiotonin-tropomyosin system. J Biochem 84, 1633–1636PubMedGoogle Scholar
  32. Potter JD, Gergely J (1975) The calcium and magnesium binding sites on troponin and their role in the regulation myofibrillar adenosine triphosphatase. J Biol Chem 250: 4628–4633PubMedGoogle Scholar
  33. Ronald ML, Umazume Y, Kushmeric MJ (1976) Ca2+ dependence of tension and ADP production in segments of chemically skinned muscle fibers. Biochim Biophys Acta 430: 352–365CrossRefGoogle Scholar
  34. Sherry JMF, Gorecka A, Aksoy MO, Dabrowska R, Hartshorne DJ (1978) Roles of calcium and phosphorylation in the regulation of the activity of gizzard myosin. Biochemistry 17: 4411–4418PubMedCrossRefGoogle Scholar
  35. Small JV, Sobieszeck A (1977) Ca-regulation of mammalian smooth muscle actomyosin via a kinase-phosphatase-dependent phosphorylation and dephosphorylation of the 20,000-Mr light chain of myosin. Eur J Biochem 76: 521–530PubMedCrossRefGoogle Scholar
  36. Solandt DY (1936) The effect of potassium on the excitability and resting metabolism of frog’s muscle. J Physiol 86: 162–179PubMedGoogle Scholar
  37. Solaro RJ, Weise RM, Shiner JS, Briggs NL (1974) Calcium requirements for cardiac myofibrillar activation. Circ Res 34: 525–530PubMedGoogle Scholar
  38. Weber A (1966) Energized calcium transport and relaxing factors. In: Sanadi DR (ed) Current topics in bioenergetics, pp 203–254. Academic Press, New York LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1980

Authors and Affiliations

  • S. Ebashi
    • 1
  • Y. Nonomura
    • 1
  • K. Kohama
    • 1
  • T. Kitazawa
    • 1
  • T. Mikawa
    • 1
  1. 1.Department of Pharmacology, Faculty of MedicineUniversity of TokyoHongo, Bunkyo-ku, Tokyo 113Japan

Personalised recommendations