Skip to main content

Polarization Utilization in Electromagnetic Inverse Scattering

  • Chapter
Inverse Scattering Problems in Optics

Part of the book series: Topics in Current Physics ((TCPHY,volume 20))

Abstract

It is the objective of this chapter to review the progress in electromagnetic inverse scattering over the past three decades by placing major emphasis on the radar target imaging problem. The complete description of electromagnetic scattering processes implies polarization and to recover the descriptive parameters of a scatterer from the measured field given the incident field requires the knowledge of the target scattering matrices and their particular properties. In. radar target discrimination, identification and imaging use of the entire spatial frequency domain of the radar cross section must be made leading to various approximate approaches whose measurement inputs differ greatly from those used for the inverse problems in optics. We begin with an introductory section (Sect.7.1) providing general definitions of the electromagnetic inverse problems and their relation to other chapters in this volume. Next, we introduce in Sect.7.2 vector diffraction integrals and formulas both in frequency and time domains which are required to derive all components of the scattering matrices, show their relations, and briefly outline novel computer-assisted numerical methods. In Sect.7.3 properties of the radar cross section, its related scattering matrices and various radar target operators are derived placing major importance on optimal polarization descriptors, i.e., the cross polarization (maximum) and co-polarization (minimum) null pairs which in the radar case are of great use in the unique description of target and clutter. We then review pertinent inverse scattering theories in the various electromagnetic spatial frequency regimes (of the radar cross section) in Sect.7.4 and we will identify their limitations and polarization sensitivity. In Sect.7.5 we show how vector holography is intrinsically related to the electromagnetic inverse problem and how polarization plays a dominant role in electromagnetic imaging. Finally, in Sect.7.6 we summarize the state of the art, define still existing open problems, and we suggest new approaches by using methods developed in other physical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Colin: Mathematics of Profile Inversion, Proc. of a Workshop, NASA Tech. Memo. X-62. 150, Ames Research Center, Moffet Field, CA (1972)

    Google Scholar 

  2. J.B. Keller: Am. Math. Mon. 83, 107–118 (1976)

    Google Scholar 

  3. R.L. Parker: Ann. Res. Earth Planet Sci. 5, 35–64 (1977)

    ADS  Google Scholar 

  4. K. Chadan, P.C. Sabatier: Inverse Problems in Quantum Scattering Theory, Texts and Monographs in Physics (Springer, Berlin, Heidelberg, New York 1977 )

    Google Scholar 

  5. W-M. Boerner: “State of the Art Review on Polarization Utilization in Electromagnetic Inverse Scattering”; Rpt. No. 78–3, Communications Laboratory, University of Illinois, Chicago (1978)

    Google Scholar 

  6. C.L. Bennett: “Inverse Scattering; Time-Domain Solutions Via Integral Equations”, Nato Advanced Study Institute on Theoretical Methods for Determining the Interaction of Electromagnetic Waves with Structures, ed. by J.K. Skwircynski ( Sijphoff & Noordhoff, Amsterdam 1980 )

    Google Scholar 

  7. J.J. Bowman, T.B.A. Senior, P.L.E. Uslenghi: Electromagnetic and Acoustic Scattering by Simple Shapes ( North-Holland, Amsterdam 1969 )

    Google Scholar 

  8. J.W. Crispin, Jr., K.M. Siegel: Methods of Radar Cross Section Analysis ( Academic, New York 1968 )

    Google Scholar 

  9. D.S. Jones: The Theory of Electromagnetism ( McMillan, New York 1964 )

    MATH  Google Scholar 

  10. V.H. Weston, W-M. Boerner: Can. J. Phys. 47, 1177–1184 (1969)

    ADS  Google Scholar 

  11. W-M. Boerner, H.P.S. Ahluwalia: Can. J. Phys. 50, 3023–3061 (1972)

    MATH  ADS  MathSciNet  Google Scholar 

  12. R.G. Newton: “Scattering Theory in the Mixed (Radon Space) Representation”, in Mathematical Methods and Applications of Scattering Theory, ed. by J.A. DeSanto, A.W. Saenz, W.W. Zachari, Lecture Notes in Physics, Vol. 130 ( Springer, Berlin, Heidelberg, New York 1980 )

    Google Scholar 

  13. V.H. Weston: “Electromagnetic Inverse Scattering”, in Electromagnetic Scattering, ed. by P.L.E. Uslenghi ( Academic, New York 1978 ) pp. 289–313

    Google Scholar 

  14. V.H. Weston: Some Results in Inverse Scattering“, presented at 16th Ann. Meeting, Soc. Eng. Sci., Northwestern University, Evanston, IL, Sept.5–7, 1979, Session TM-7

    Google Scholar 

  15. A.K. Jordan, S-Y. Ahn: “Inverse Scattering Theory and Profile Reconstruction”; NRL-Mem. Rpt. 3981, Naval Research Laboratory, Washington, D.C. (1979)

    Google Scholar 

  16. R.M. Lewis: IEEE Trans. AP-17, 308–314 (1969)

    Google Scholar 

  17. E.M. Kennaugh, R.L. Cosgriff: IRE Natl. Conv. Rec., 72–77 (1958)

    Google Scholar 

  18. E.M. Kennaugh, D.L. Moffatt: IEEE Proc. NAEC-53, 893–901 (1965)

    Google Scholar 

  19. J.L. Mesla, D.L. Cohn: Decision and Estimation Theory ( McGraw-Hill, New York 1978 )

    Google Scholar 

  20. J.K. von Schlachta: IEEE Conf. Publ. (London) 155, 135–139 (1977)

    Google Scholar 

  21. K.V. Mardia: Statistics of Directional Data ( Academic, New York 1972 )

    MATH  Google Scholar 

  22. Y.T. Lin, A.A. Ksienski: Radio & Electron. Eng. 46, 472–486 (1976)

    Google Scholar 

  23. A.A. Ksienski: “Inverse Scattering as a Target Identification Problem”, in International Symp. Recent Developments in Classical Wave Scattering — Focus on the T-Matrix Approach, Ohio State University, Columbus, Ohio, June 25–27, 1979, ed. by V.K. Varadan, V. V. Varadan (Pergamon, New York 1980 )

    Google Scholar 

  24. J.D. Young: “Approximate Image Reconstruction from Transient Signature”, in International Symp. Recent Developments in Classical Wave Scattering — Focus on the T Matrix Approach, Ohio State University, Columbus, Ohio, June 25–27, 1979, ed. by V.K. Varadan, V. V. Varadan (Pergamon, New York 1980 )

    Google Scholar 

  25. N.N. Bojarski: “Three-Dimensional Electromagnetic Short Pulse Inverse Scattering”; Special Projects Lab. Rpt. AD845 126 Syracuse Univ. Res. Corp. Syracuse, N.Y. (Feb. 1967). [Also “Electromagnetic Inverse Scattering Theory”, Syracuse Univ. Res. Corp. Rpt. SPL-TR-68–70 (Dec. 1968)]

    Google Scholar 

  26. G.A. Deschamps,•G.A. Cabayan: IEEE Trans. AP-20, 168–174 (1972)

    Google Scholar 

  27. W.L. Perry: IEEE Trans. AP-22, 826–829 (1974)

    Google Scholar 

  28. R.D. Mager, N. Bleistein: IEEE Trans. AP-26, 695–699 (1978)

    Google Scholar 

  29. N. Bleistein, J.K. Cohen: “.A Survey of Recent Progress in Inverse Scattering”; Tech. Rpt. MS-R-7806, University of Denver (1978)

    Google Scholar 

  30. J. Radon: Ber. Verh. Sächs. Akad. Wiss. Leipzig Math. Phys. Kl. 69, 262–267 (1917)

    Google Scholar 

  31. Y. Das, W-M. Boerner: IEEE Trans. AP-26, 274–279 (1978)

    Google Scholar 

  32. W-M. Boerner, C-M. Ho: “Development of Physical Optics, Far Field Inverse Scattering and Its Limitations”, IEEE-APS 1979 Intern. APS Symp. Proc., Vol.I, pp. 240–243

    Google Scholar 

  33. K.T. Smith, D.C. Solomon, S.L. Wagner: Bull. AMS 83, 1227–1270 (1977)

    MATH  Google Scholar 

  34. D. Ludwig: Commun. Pure Appl. Math. 19, 49–81 (1966)

    MATH  MathSciNet  Google Scholar 

  35. W-M. Boerner: “Development of Physical Optics Inverse Scattering Theory”, in Mathematical Methods and Applications of Scattering Theory, ed. by J.A. DeSanto, A.W. Saenz, W.W. Zachari, Lecture Notes in Physics, Vol. 130 ( Springer, Berlin, Heidelberg, New York 1980 )

    Google Scholar 

  36. A. Papoulis: Probability, Random Variables and Stochastic Processes ( McGraw-Hill, New York 1965 )

    MATH  Google Scholar 

  37. G. Backus, I. Gilbert: Philos. Trans. R. Soc. London Ser. A266, 123–192 (1970)

    ADS  MathSciNet  Google Scholar 

  38. Geophys. J. R. Astron. Soc. 13, 247–276 (1967)

    Google Scholar 

  39. V.G. Makhankov: Phys. Rep. 35, 1–128 (1978)

    ADS  MathSciNet  Google Scholar 

  40. A.C. Scott, F.Y.F. Chu, D.W. McLaughlin: IEEE Proc. NAEC-61, 1443–1483 (1973)

    Google Scholar 

  41. J.M. Bennett, H.E. Bennett: “Polarization”, in Handbook of Optics, ed. by W.G. Criscoll, W. Vaughan (McGraw-Hill, New York 1978 ) Chap. 10

    Google Scholar 

  42. J.A. Stratton: Electromagnetic Theory ( McGraw-Hill, New York 1941 )

    MATH  Google Scholar 

  43. M.A. Leontovich: “Appendix”, in Diffraction, Reflection and Refraction of Radio Waves, 13 Papers by V.A. Fock, ed. by N. Logan, P. Blacksmith; Rpt. No. AD-117276 (U.S. Government Printing Office, Washington, D.C. 1957); also see: Investigation of Propagation of Radio Waves, II ( Sovetskoye Radio Press, Moscow 1948 ) [in Russian]

    Google Scholar 

  44. R.S. Berkowitz: Modern Radar, Analysis, Evaluation, and System Design ( Wiley, New York 1965 )

    Google Scholar 

  45. F.E. rtathanson: Radar Design Principles, Signal Processing and the Environment ( McGraw-Hill, New York 1969 )

    Google Scholar 

  46. M.I. Skolnik: Introduction to Radar Systems (McGraw-Hill, New York 1962 ); also see: M.I. Skolnik: Radar Handbook ( McGraw-Hill, New York 1978 )

    Google Scholar 

  47. G.T. Ruck, D.E. Barrick, W.D. Stuart, C.K. Krichbaum: Radar Cross Section Handbook, Vols. I, II (Plenum, New York 1970 )

    Google Scholar 

  48. J.A. Stratton, L.J. Chu: Phys. Rev. 56, 99–107 (1939)

    MATH  ADS  Google Scholar 

  49. L.B. Felsen (ed.): Transient Electromagnetic Fields, Topics in Applied Physics, Vol. 10 ( Springer, Berlin, Heidelberg, New York 1976 )

    Google Scholar 

  50. H. Hönl, A.W. Maue, K. Westpfahl: “Theorie der Beugung”, in Crystal Optics. Diffraction, Encyclopedia of Physics, Vol.XXV/1 (Springer, Berlin Göttingen, Heidelberg 1961 )

    Google Scholar 

  51. N. Wiener: Acta Math. 55, 117–258 (1930); also see reprint ( MIT Press, Cambridge, MA 1964 )

    Google Scholar 

  52. B. Van der Pol, H. Bremmer: Operational Calculus ( Cambridge University Press, Cambridge 1955 )

    MATH  Google Scholar 

  53. M. Kline, I.W. Kay: Electromagnetic Theory and Geometrical Optics, Pure and Applied Mathematics, Vol. XII ( Wiley-Interscience, New York 1965 )

    Google Scholar 

  54. M. Born, E. Wolf: Principles of Optics ( Pergamon, New York 1959 )

    MATH  Google Scholar 

  55. F.A. Jenkins, H.E. White: Fundamentals of Optics, 3rd ed. ( McGraw-Hill, New York 1951 )

    Google Scholar 

  56. P. Beckmann, A. Spizzichino: The Scattering of Electromagnetic Waves from Rough Surfaces ( McMillan, New York 1963 )

    MATH  Google Scholar 

  57. P. Beckmann: The Depolarization of Electromagnetic Waves ( Golem, Boulder, CO 1968 )

    Google Scholar 

  58. M.W. Long: Radar Reflectivity of Land and Sea (Lexington Books, Heath & Co., Lexington, MA 1975 )

    Google Scholar 

  59. D.B. Kanareykin, N.F. Pavlov, U.A. Potekhin: The Polarization of Radar Signals (Sovetskoye Radio Press, Moscow 1966) [in Russian] [English transl.: Radar Polarization Effects (C. Collier & MacMillan, New York 1974) Chaps. 10–12]

    Google Scholar 

  60. G.A. Deschamps: Proc. IRE 39, 543–548 (1951)

    Google Scholar 

  61. J.R. Huynen: “Radar Target Sorting Based upon Polarization Signature Analysis”; Lockheed Missiles and Space Division Rpt.28–82–16 (1960); AD–318597 (1972)

    Google Scholar 

  62. J.R. Huynen: Proc. IEEE 53, 936–946 (1965)

    Google Scholar 

  63. J.R. Huynen: “Phenomenological Theory of Radar Targets”; Ph.D. Thesis, Technical University Delft (1970)

    Google Scholar 

  64. J.R. Huynen: “Radar Target Phenomenology in Electromagnetic Scattering”, in Electromagnetic Scattering, Selected Papers of a NH Conf., UICC, Chicago, June 15–18, 1976, ed. by P.L.E. Uslenghi ( Academic, New York 1978 )

    Google Scholar 

  65. A.B. Schneider, P.D.L. Williams: Radio Electron. Eng. 47, 11–29 (1976)

    ADS  Google Scholar 

  66. G. Sinclair: “Modification of the Radar Range Equation for Arbitrary Targets and Arbitrary Polarization”; Rpt. 302–19, Antenna Laboratory, Ohio State University, Columbus (1948)

    Google Scholar 

  67. P.J. Napier, R.H.T. Bates: Proc. IEE 120, 30–34 (1973)

    Google Scholar 

  68. P.J. Napier, R.H.T. Bates: Proc. IREEE (Australia) 32, 164–165 (1971)

    Google Scholar 

  69. P.J. Napier, R.H.T. Bates: Int. J. Eng. Sci. 9, 1107–1121 (1971)

    Google Scholar 

  70. P.J. Napier, R.H.T. Bates: Int. J. Eng. Sci. 9, 1193–1208 (1971)

    Google Scholar 

  71. K.E. Maffett: “Radar Polarization Properties”, in Methods of Radar Cross Section Analysis, ed. by J.W. Crispin, K.M. Siegel ( Academic, New York 1968 )

    Google Scholar 

  72. C.D. Graves: Proc. IRE 44, 248–252 (1956)

    Google Scholar 

  73. A. Ishimaru: Wave Propagation and Scattering in Random Media, Vol.1: Single Scattering and Transport Theory; Vol. 11: Multiple Scattering, Turbulence, Rough Surfaces, and Remote Sensing (Academic, New York 1978 )

    Google Scholar 

  74. J.A. Stiles, J.C. Holtzman (eds.): “Radar Backscatterer from Terrain”; Tech. Rpt. RSLR374–2, Remote Sensing Laboratory, Fort Belvoir, VA (1979)

    Google Scholar 

  75. E.M. Kennaugh: “Effects of Type of Polarization on Echo Signals”; Tech. Rpt. 389–9, Antenna Laboratory, Ohio State University, Columbus (1951)

    Google Scholar 

  76. E.M. Kennaugh: “Polarization Properties of Target Reflection”; Tech. Rpt. 389–2, Griffis AFB (1952)

    Google Scholar 

  77. V.H. Rumsey, G.Y. Deschamps, M.L. Kales, J.I. Bohnert: Proc. IRE 39, 535–553 (1951)

    Google Scholar 

  78. H. Gent: “Elliptically Polarized Waves and Their Reflection from Radar Targets: a Theoretical Analysis”; Memo 584 Telecommunications Research Establishment (1954)

    Google Scholar 

  79. J.R. Copeland: Proc. IRE 48, 1290–1296 (1960)

    Google Scholar 

  80. G.H. Knittel: IEEE Trans. AP-15, 217–221 (1967)

    Google Scholar 

  81. J.W. Crispin, Jr.: The Measurement and Use of Scattering Matrices“; Tech. Rpt.2500–3T, Radiation Laboratory, Ann Arbor (1960)

    Google Scholar 

  82. J.R. Huynen: IRE Cony. Rec. Pt. 5, Vol. 10, 3–11 (1962)

    Google Scholar 

  83. N.R. Landry: “Measuring the Phase and the Amplitude of Backscattered Radar Energy on a Static Range”; Tech. Rpt. RADC-TDR-65–24, Rome Air Development Center, NY (1964)

    Google Scholar 

  84. J.A. Webb, W.P. Allan: “Precision Measurements of the Radar Scattering Matrix”; Tech. Rpt. RADC-TDR-64–25, Rome Air Development Center, NY (1964)

    Google Scholar 

  85. O. Lowenschuss: Proc. IEEE 53, 988–992 (1965)

    Google Scholar 

  86. F. Kuhl, R. Covelli: Proc. IEEE 53, 1110–1115 (1965)

    Google Scholar 

  87. D.B. Kanareykin, V.A. Potekhin, I. Shishkin: Maritime Polarimetry (Sudostroyeniye, Moscow 1968 ) [in Russian]

    Google Scholar 

  88. Yu.B. Kobzarev (ed.): Modern Radar ( Sovetskoye Radio Press, Moscow 1969 ) [in Russian]

    Google Scholar 

  89. Ya.D. Shirman (ed.): Theoretical Fundamentals of Radar ( Sovetskoye Radio Press, Moscow 1970 ) [in Russian]

    Google Scholar 

  90. M.M. Gorshkov: Ellipsometry ( Sovetskoye Radio Press, Moscow 1974 ) [in Russian]

    Google Scholar 

  91. L.A. Zhivotovskiy: Radio Eng. 31, 46–53 (1976)

    Google Scholar 

  92. See Chap.2

    Google Scholar 

  93. L.M. Spetner, I. Katz: IEEE Trans. AP-8, 242–246 (1960)

    Google Scholar 

  94. W.S. Ament: IEEE Trans. AP-8, 167–174 (1960)

    Google Scholar 

  95. H.C. Ko: Proc. IRE 50, 1950–1951 (1962)

    Google Scholar 

  96. A.K. Fung: Proc. IEEE 54, 996–998 (1966)

    Google Scholar 

  97. A.K. Fung: Proc. IEEE 54, 395–396 (1966)

    Google Scholar 

  98. A.K. Fung: Planet Space Sci. SA-15, 1337–1347 (1967)

    Google Scholar 

  99. J.W. Strohbehn (ed.): Laser Beam Propagation in the Atmosphere, Topics in Applied Physics, Vol. 25 ( Springer, Berlin, Heidelberg, New York 1978 )

    Google Scholar 

  100. T. Hagfors: Radio Sci. 2, 445–465 (1967)

    ADS  Google Scholar 

  101. A. Stogryn: Radio Sci. 2, 415–428 (1967)

    ADS  Google Scholar 

  102. V. Evans: Bull. Va. Polytech. Inst. 4, 237–259 (1962)

    Google Scholar 

  103. H.C. Van de Hulst: Light Scattering by Small Particles ( Wiley, New York 1957 )

    Google Scholar 

  104. G.C. McCormick, A. Hendry: Radio Sci. 11, 731–740 (1976)

    ADS  Google Scholar 

  105. J.C. Daley, W.T. Davis, N.R. Mills: “Radar Sea Return in High Sea States”; Tech. Rpt. No.7142, National Research Laboratories (1970)

    Google Scholar 

  106. F.G. Bass, I.M. Fuks: “Scattering of Waves by Statistically Irregular Surfaces”, Parts I,II [transl. from Russian] JPRS Rpt. No.66061–1, NTIS (1975)

    Google Scholar 

  107. G.R. Valenzuela: Boundary-Layer Meteorol. 13, 61–85 (1978)

    ADS  Google Scholar 

  108. G.R. Valenzuela: “Scattering of Electromagnetic Waves from the Ocean”, in Surveillance of Environmental Pollution and Resources by Electromagnetic Waves, ed. by T. Lund ( Reidel, Dordrecht, Holland 1978 ) pp. 199–226

    Google Scholar 

  109. G. Kortüm: Reflectance Spectroscopy (Springer, Berlin, Heidelberg, New York 1969 )

    Google Scholar 

  110. J.C. Leader: Radio Sci. 13, 441–457 (1978)

    ADS  Google Scholar 

  111. P.T. Gough, W-M. Boerner: J. Opt. Soc. Am. 69, 1212–1217 (1979)

    ADS  Google Scholar 

  112. J.C. Daley: “Radar Target Detection Based on Polarization Effects”, NAVAIR Review (1978)

    Google Scholar 

  113. G.A. Ioannidis, D.E. Hammer: IEEE Trans. AP-27, 357–363 (1979)

    Google Scholar 

  114. L.A. Morgan: “Radar Cross Section Scattering Matrix”, NAVAIR Review (1978)

    Google Scholar 

  115. R.O. Harger: Synthetic Aperture Radar Systems: Theory and Design ( Academic, New York 1970 )

    Google Scholar 

  116. S. Marder: “Synthetic Aperture Radar”, in Atmospheric Effects on Radar Target Identification and Imaging (Reidel, Dordrecht, Holland 1976 )

    Google Scholar 

  117. F.T. Ulaby: IEEE Trans. AP-22, 257–266 (1974)

    Google Scholar 

  118. F.M. Dickey, R.K. Moore, C. King, J. Holtzman: “Moisture Dependency of Radar Backscattering from Irrigated and Non-Irrigated Fields at 400 MHz and 13 GHz”; CRES Tech. Rpt.177–33, Center of Res., University of Kansas, Lawrence, KA (1972)

    Google Scholar 

  119. R. Rawson, F. Smith, R. Larson: in Proceedings of the 1975 IEEE International Radar Conference ( Washington, D.C. 1975 ) pp. 505–509

    Google Scholar 

  120. R.W. Larson, F. Smith, R. Lawson, M.L. Brian: “Multispectral Microwave Imaging Radar for Remote Sensing Applications”, in Microwave Scattering and Emission from the Earth, Proc. URSI Special Meeting, ed. by E. Schanda (University of Bern 1974 ) pp. 305–315

    Google Scholar 

  121. J.R. McCauley: “Surface Configuration as an Explanation for LithologyRelated Cross Polarized Radar Image Anomalies”; Tech. Rpt. 177–36, Space Technology Laboratory, Kansas (1973)

    Google Scholar 

  122. H. Gniss, K. Magura: “mm-Wave Images of Ground-Based Objects”, Rpt. 1–78153, FHP-FGAN, Wachtberg-Werthoven, FRG (1978)

    Google Scholar 

  123. H. Gniss, J. Magura, R. Karg, H. Ermert, H. Brand, W-M. Boerner: “Polarization Dependence of Image Fidelity in Microwave Mapping Systems”, in 1978 International IEEE APS Symposium Proceedings, pp.38–42

    Google Scholar 

  124. R.H.T. Bates, M.J. McDonell: Astrophys. J. 208, 443–452 (1976)

    ADS  Google Scholar 

  125. R.G. Koujoumjian: Proc. IEEE 53, 864–876 (1965)

    Google Scholar 

  126. R. Kell: Proc. IEEE 53, 983–988 (1965)

    Google Scholar 

  127. J.W. Strutt: Lord Rayleigh: Collected Scientific Papers ( Dover, New York 1964 )

    Google Scholar 

  128. J.S. Asvestas, R.E. Kleinman: “Low Frequency Electromagnetic Scattering”, in Electromagnetic Scattering, ed. by P.L.E. Uslenghi ( Academic, New York 1978 )

    Google Scholar 

  129. P.J. Wyatt: Appl. Opt. 7, 1879–1896 (1968)

    ADS  Google Scholar 

  130. N.A. Logan: Proc. IEEE 53, 773–785 (1965)

    Google Scholar 

  131. R.F. Harrington: “Characteristic Modes for Antennas and Scatterers”, in Numerical and Asymptotic Techniques in Electromagnetics, ed. by R. Mittra, Topics in Applied Physics, Vol. 3 ( Springer, Berlin, Heidelberg, New York 1975 ) pp. 51–87

    Google Scholar 

  132. C.E. Baum: Proc. IEEE 64, 1598–1616 (1976)

    ADS  MathSciNet  Google Scholar 

  133. F.M. Tesche: IEEE Trans. AP-21, 53–62 (1973)

    Google Scholar 

  134. L. Marin: IEEE Trans. AP-21, 266–274 (1973)

    Google Scholar 

  135. L. Marin: IEEE Trans. AP-21, 809–818 (1973)

    Google Scholar 

  136. A.J. Berni: IEEE Trans. AES-11, 147–154 (1975)

    Google Scholar 

  137. D.L. Moffatt, R.K. Mains: IEEE Trans. AP-23, 358–367 (1975)

    Google Scholar 

  138. C.W. Chuang, D.L. Moffatt: Abstracts of 1975 URSI NRC Meeting, June 3–5, 1975, UIUC, Urbana, IL, pp. 67–68

    Google Scholar 

  139. Electro-Science Lab.: “Radar Target Identification I,II”; Class Notes, Sept.1976, Ohio State University, Columbus, Ohio

    Google Scholar 

  140. A. Freedman: Radio Electron. Eng. 25, 51–64 (1963)

    Google Scholar 

  141. R.M. Bracewell: The Fourier Transform and Its Applications ( McGraw-Hill, New York 1965 )

    MATH  Google Scholar 

  142. J.W. Goodman: Introduction to Fourier Optics ( McGraw-Hill, New York 1968 )

    Google Scholar 

  143. J.B. Keller: “On the Use of Short-Pulse Broad Band Radar for Target Identification”; Rpt., Feb.17, 1965, RCA Moorestown, NJ

    Google Scholar 

  144. W-M. Boerner, C-M. Ho: Wave Motion 4 (1980) in press

    Google Scholar 

  145. D.L. Moffatt, J.D. Young: IEEE Trans. AP-17, 337–344 (1975)

    Google Scholar 

  146. R.G. Newton: Physica 96A, 271–279 (1979)

    MathSciNet  Google Scholar 

  147. N.N. Bojarski: “Electromagnetic Inverse Scattering”, NAVAIR Systems Command, AD-775 235/1–4 (1972–4)

    Google Scholar 

  148. N. Bleistein, R.A. Handelsmann: Asymptotic Expansions of Integrals (Holt, Reinhart, and Winston, New York 1975 )

    Google Scholar 

  149. J.D. Young: “Target Imaging from Multiple-Frequency Radar Returns”; Tech. Rpt.2268–5, AD-728235, Electro-Science Laboratory, Ohio State University, Columbus, Ohio (1971); also see: IEEE Trans. AP-24, 276–282 (1976)

    Google Scholar 

  150. S.K. Chaudhuri, W-M. Boerner: Appl. Phys. 11, 337–350 (1976); also see: IEEE Trans. AP-25, 505–511 (1977)

    Google Scholar 

  151. A. Majda: Commun. Pure Appl. Math. 30, 165–194 (1977)

    MATH  MathSciNet  Google Scholar 

  152. J. Picht: Optische Abbildung ( Vieweg, Braunschweig 1931 )

    Google Scholar 

  153. R.K. Luneburg: Mathematical Theory of Optics (Brown University Notes, Providence, R. I. 1944 )

    Google Scholar 

  154. I. Kay, J.B. Keller: J. Appl. Phys. 25, 876–883 (1954)

    MATH  ADS  MathSciNet  Google Scholar 

  155. J.B. Keller: The Geometrical Theory of Diffraction, URSI Symposium on Microwave Optics ( McGill University, Montreal 1953 )

    Google Scholar 

  156. P.Ya. Ufimtsev: “Method of Edge Waves in the Physical Theory of Diffraction”; [transi. from Russian] Foreign Technology Service, Sept., 1971, Wright-Patterson AFB

    Google Scholar 

  157. C.E. Ryan, W.L. Peters, Jr.: The Relation of Creeping Wave Phenomena to the Shadow Zone Geometry“, Proc. GISAT II Symp., Pct.2–7, 1967, Mitre Corp., Bedford, MA, Vol.II, Pt. 1, pp. 315–349

    Google Scholar 

  158. R.F. Miller: Radio Sci. 8, 785–796 (1973)

    ADS  MathSciNet  Google Scholar 

  159. V.A. Borovikov, B.Ye. Kinber: Proc. IEEE 62, 1416–1437 (1974)

    ADS  Google Scholar 

  160. J.B. Keller: IEEE Trans. AP-7, 146 (1959)

    Google Scholar 

  161. J.L. Altman, R.H.T. Bates, E.N. Fowle: “Introductory Notes Relating to Electromagnetic Inverse Scattering”; Tech. Rpt. SR-121, Mitre Corp. (1964)

    Google Scholar 

  162. J.B. Keller, R.M. Lewis: Commun. Pure Appl. Math. 9, 207–265 (1956)

    MATH  MathSciNet  Google Scholar 

  163. M.R. Weiss: J. Opt. Soc. Am. 58, 1524–1528 (1968)

    ADS  Google Scholar 

  164. B.Ye. Kinber: Akust. Zh. 1 (3), 221–225 (1955)

    Google Scholar 

  165. L.A. Blasberg: “Short-Pulse Signature Analysis for Midcourse Discrimination”. Internal Rpt., 1963, RCA Moorestown, NJ

    Google Scholar 

  166. H. Minkowski: Math. Ann. 57, 447–495 (1903)

    MATH  MathSciNet  Google Scholar 

  167. L. Nirenberg: Commun. Pure Appl. Math. 6, 337–394 (1953)

    MATH  MathSciNet  Google Scholar 

  168. J.J. Stoker: Commun. Pure Appl. Math. 3, 231–257 (1950)

    MATH  MathSciNet  Google Scholar 

  169. P.C. Waterman, M.R. Weiss: “Inverse Scattering and the Minkowski Problem”, Proc. GISAT II Symp., Oct.2–4, 1967, Mitre Corp., Bedford, MA, Vol.2, Pt. 1, pp. 371–376

    Google Scholar 

  170. W.T. Payne: “Determination of Shape and Size of Non-Axisymmetric Conducting Targets by Geometrical Optics”, Proc. GISAT II Symp., Oct.2–4, 1967, Mitre Corp., Bedford, MA, Vol.2, Pt. 1, pp. 303–313

    Google Scholar 

  171. F.H. Vandenberghe, W-M. Boerner: Radio Sci. 6, 1163–1171 (1971)

    Google Scholar 

  172. C.L. Bennett, J.D. Delorenzo, A.M. Auckenthaler: “Integral Equation Approach to Wide-Band Inverse Scattering”; Final Rpt. Contract No. F30602–69-C-0322, Sperry-Rand Res. Centre, Sudberry, MA (1970)

    Google Scholar 

  173. C.L. Bennett, A.M. Auckenthaler, R.S. Smith, J.D. Delorenzo: “Space-Time Integral Equation Approach to the Large Body Scattering Problem”, Rpt. No. SCRCR-Cr-73–1, Sperry-Rand Res. Centre, Sudberry, MA (1973)

    Google Scholar 

  174. M.E. Bechtel, R.A. Ross: “Radar Scattering Analysis”; Tech. Rpt. EK-IRIS-10 (1966)

    Google Scholar 

  175. J.A. Hammer: “A Method to Determine the Scattering Centers from the Back Scatterer Pattern of a Body”, Proc. GISAT II Symp., Oct.2–4, 1967, Mitre Corp., Bedford, MA, Vol.2, Pt.1, pp.223–235; AD 839–700

    Google Scholar 

  176. S.H. Bickel: “Polarization Studies and Scattering Matrix Applications”, Proc. GISAT II Symp., Oct.2–4, 1967, Mitre Corp., Bedford, MA, Vol.2, Pt. 1, pp. 119–133

    Google Scholar 

  177. S.H. Bickel, J.F.A. Ormsby: Proc. IEEE 53, 1067–1089 (1965)

    Google Scholar 

  178. N.M. Tom]janovich, H.S. Ostrowsky, J.F.A. Ormsby: “Narrow-Band Interferometer Imaging”; Project 4966, Mitre Corp. (1968); AD 679–208

    Google Scholar 

  179. J.C. Dainty (ed.): Laser Speckle and Related Phenomena, Topics in Applied Physics, Vol. 9 ( Springer, Berlin, Heidelberg, New York 1975 )

    Google Scholar 

  180. L.J. Porcello, J.L. Allan (eds.): Proc. IEEE 62 (1974) ( Special Issue, Modern Radar Technology and Applications )

    Google Scholar 

  181. R.M. Bracewell: Austr. J. Phys. 9, 198–217 (1956)

    MATH  ADS  MathSciNet  Google Scholar 

  182. J.B. DeVelis, G. Reynolds: Theory and Application of Holography ( Academic, New York 1969 )

    Google Scholar 

  183. H.M. Smith: Principles of Holography ( Wiley-Interscience, New York 1969 )

    Google Scholar 

  184. W.G. Stroke: An Introduction to Coherent Optics and Holography ( Academic, New York 1969 )

    Google Scholar 

  185. W.E. Kock: Radar, Sonar and Holography ( Academic, New York 1973 )

    Google Scholar 

  186. N. George, A. Jain, R.D.S. Melville, Jr.: Appl. Phys. 6, 65–70 (1975)

    ADS  Google Scholar 

  187. H. Ghandeharian, W-M. Boerner: J. Opt. Soc. Am. 68, 931–934 (1978) 7.184 R.P. Porter, W.C. Schwab: J. Opt. Soc. Am. 61, 789–796 (1971)

    Google Scholar 

  188. D. Gabor: Proc. R. Soc. (London) A197, 454–487 (1949); Nature 161, 777–778 (1948)

    Google Scholar 

  189. D. Gabor: Proc. Phys. Soc. (London) B64, 449–482 (1951)

    MATH  ADS  Google Scholar 

  190. A.W. Lohmann: Appl. Opt. 4, 1667–1668 (1965)

    ADS  Google Scholar 

  191. C.N. Kurtz: Appl. Phys. Lett. 14, 59–61 (1969)

    ADS  Google Scholar 

  192. G.L. Rogers: J. Opt. Soc. Am. 56, 831 (1966)

    Google Scholar 

  193. G.L. Rogers: Nature 177, 613 (1956)

    ADS  Google Scholar 

  194. O. Bryngdahl: J. Opt. Soc. Am. 58, 702 (1968)

    Google Scholar 

  195. O. Bryngdahl: J. Opt. Soc. Am. 57, 545–546 (1967)

    Google Scholar 

  196. M.W. Fourney, A.P. Waggoner, K.V. Mate: J. Opt. Soc. Am. 58, 701–702 (1968)

    Google Scholar 

  197. W.H. Cater, P.D. Engeling, A.A. Dougal: IEEE Trans. QE-2, 44–46 (1966)

    Google Scholar 

  198. E.N. Leith, J. Upatnieks: J. Opt. Soc. Am. 54, 1295–1302 (1964)

    ADS  Google Scholar 

  199. S.C. Som, R.A. Lassard: Appl. Phys. Lett. 17, 381–382 (1970)

    ADS  Google Scholar 

  200. K.S. Pennington, R.J. Collier: Appl. Phys. Lett. 8, 14–16, 44 (1966)

    Google Scholar 

  201. W.A. Shurcliff: Polarized Light ( Harvard University Press, Cambridge, MA 1962 )

    Google Scholar 

  202. M.L.A. Gassend: “Holographic Imaging of Trans-Illuminated Particle Fields Using a Local Optically Processed Reference Wave”; Ph.D. Thesis, University of Manitoba, Winnipeg, Canada (1976)

    Google Scholar 

  203. N. George, A. Jain, R.D.S. Melville, Jr.: Appl. Phys. 7, 157–169 (1975)

    ADS  Google Scholar 

  204. M.L. Varshayshuk, V.O. Kobak: Radio Eng. Electron. Phys. 16, 201–205 (1971)

    Google Scholar 

  205. H. Ghandeharian, W-M. Boerner: Opt. Acta 24, 1087–1097 (1977)

    ADS  Google Scholar 

  206. M.L.A. Gassend, W-M. Boerner: Appl. Phys. 13, 71–79 (1977)

    ADS  Google Scholar 

  207. Q.P. Porter: Proc. IEEE 59, 307–308 (1971)

    Google Scholar 

  208. R.P. Porter: J. Opt. Soc. Am. 60, 1051–1059 (1970)

    ADS  Google Scholar 

  209. R.P. Porter: Phys. Lett. 2A, 193–194 (1969)

    Google Scholar 

  210. A.F. Methrell (ed.): Acoustical Holography, Vol. 3 ( Plenum, New York 1971 )

    Google Scholar 

  211. G. Tricoles, N.H. Farhat: Proc. IEEE 65, 108–121 (1977)

    ADS  Google Scholar 

  212. N.H. Farhat: Opt. Eng. 14, 490–505 (1975)

    ADS  Google Scholar 

  213. K. Iizuka: Proc. IEEE 57, 812–814 (1969)

    Google Scholar 

  214. W.E. Kock: Appl. Opt. 14, 1471–1472 (1975)

    ADS  Google Scholar 

  215. G. Graf: IEEE Trans. AP-24, 378–381 (1976)

    Google Scholar 

  216. K. Magura: “Probleme bei der holographischen Abbildung im Mikrowellen– bereich”; Tech. Rpt.6–72–11, HFP–FGAN Wachtberg Werthoven (1972)

    Google Scholar 

  217. R. Karg: Arch. Elektr. Obertr. 31, 150–156 (1976)

    Google Scholar 

  218. J. Detlefsen: Nachrichtentech. Z. 30, 723–725 (1977)

    Google Scholar 

  219. K. Iizuka: Proc. IEEE 5, 812–814 (1967)

    Google Scholar 

  220. P.M. Woodward: J. IEE 93–111A, 1554 (1943)

    Google Scholar 

  221. P.M. Woodward: J.IEE 95–111A, 363–370 (1948)]

    Google Scholar 

  222. D.R. Rhodes: Proc. IEEE 53, 1013–1021 (1965)

    Google Scholar 

  223. D.R. Rhodes: IEEE Trans. AP-19, 162–166 (1971)

    Google Scholar 

  224. D.R. Rhodes: AP-20, 143–145 (1972)

    Google Scholar 

  225. R.A. Hurd: Proc. IEE 121, 32–48 (1974)

    Google Scholar 

  226. G. Tricoles, D.C. Yue: “Feasibility of Microwave Holographic Imaging Systems”; ARPA Tech. Rpt. F33615–72C-1655, General Dynamics, Electr. Div., San Diego, CA (1972)

    Google Scholar 

  227. D.D. Howard: IEEE Trans. AES-11, 749–755 (1975)

    Google Scholar 

  228. G. Tricoles: Acoust. Hologr. 6, 469–484 (1975)

    Google Scholar 

  229. W-M. Boerner, F.H. Vandenberghe: Can. J. Phys. 49, 1507–1535 (1971)

    ADS  Google Scholar 

  230. W-M. Boerner, O.A. Aboul-Atta: Util. Math. 3, 163–273 (1973)

    MATH  MathSciNet  Google Scholar 

  231. V.H. Weston, W-M. Boerner: “Inverse Scattering Investigations”; Tech. Rpt. 8575, University of Michigan Radiation Lab. (1968)

    Google Scholar 

  232. V.H. Weston, J.J. Bowman, E. Ar: Arch. Ration. Mech. Anal. 31, 199–213 (1968)

    MATH  MathSciNet  Google Scholar 

  233. H.P.S. Ahluwalia, W-M. Boerner: IEEE Trans. AP-21, 672–673 (1973)

    Google Scholar 

  234. H.P.S. Ahluwalia, W-M. Boerner: IEEE Trans. AP-22, 663–682 (1974)

    Google Scholar 

  235. H.P.S. Ahluwalia: “Application of the Concept of Electromagnetic Inverse Boundary Conditions to Profile Characteristics Inversion of Conducting Shapes”; Ph.D. Thesis, University of Manitoba, Winnipeg, Canada (1973)

    Google Scholar 

  236. H.M. Smith (ed.): Holographic Recording Materials, Topics in Applied Physics, Vol. 20 ( Springer, Berlin, Heidelberg, New York 1977 )

    Google Scholar 

  237. G.A. Yerokhin, V.G. Kocherzhevsky: Radio Eng. Electron. Phys. 19, 17–23 (1974)

    Google Scholar 

  238. D.V. Skobel’tsyn: Sov. Phys. Usp. 16, 381–401 (1973)

    ADS  Google Scholar 

  239. P.F. Wacker: “Non-Planar Near-Field Measurements: Spherical Scanning”; Tech. Rpt. NSRIR 75–809, National Bureau of Standards, Boulder, CO (1975)

    Google Scholar 

  240. A.C. Newell, R.C. Baird, P.F. Wacker: IEEE Trans. AP-21, 418–431 (1973)

    Google Scholar 

  241. J. Brown, E.V. Jull: Proc. IEE 108 B, 635–644 (1961)

    Google Scholar 

  242. P.F. Wacker: “A Qualitative Survey of Near Field Analysis and Measurement”; Tech. Rpt. NBSIR-79–1602, National Bureau of Standards, Boulder, CO (1979)

    Google Scholar 

  243. Y.T. Lo, W.F. Richards, P. Simon: Proceedings Intern. Con. IEEE APS Symp., June 18–22, 1979, Seattle, WA, pp.11–12

    Google Scholar 

  244. P.C. Waterman: Proc. IEEE 53, 805–812 (1965)

    Google Scholar 

  245. R.H.T. Bates, D.J.N. Wall: Philos. Trans. R. Soc. (London) A287, 45–114 (1977)

    ADS  MathSciNet  Google Scholar 

  246. R.H.T. Bates: “General Introduction to the Extended Boundary Conditions”, in Recent Developments in Classical Wave Scattering, Intern. Symposium & Workshop, June 25–27, 1979, Ohio State University (Academic, to be published)

    Google Scholar 

  247. W-M. Boerner, C-M. Ho: “Use of Radon’s Projection Theory in Electromagnetic Inverse Scattering”, IEEE Trans. AP-29 (in preparation)

    Google Scholar 

  248. R.F. Elsner: “Vehicular Variable Parameter”; METRRA Systems Final Rpt., Rpt. No. ITR-I-E6224, Illinois Institute of Technology, Tech. Research Center (1974); AD-782–214

    Google Scholar 

  249. A.J. Poelman: IEEE Trans. AES-11, 660–662 (1975)

    Google Scholar 

  250. A.J. Poelman: IEEE Trans. AES-12, 674–682 (1976)

    Google Scholar 

  251. A.J. Poelman: Electron. Lett. 13, 533–534 (1977)

    Google Scholar 

  252. A.J. Poelman: Tijdschr. Ned. Electron. Radio-genoot. 44, 93–106 (1979)

    Google Scholar 

  253. IEEE Trans. AP-26 (1978) (Special Issue on EMP)

    Google Scholar 

  254. IEEE Proc. 62 (1974) (Special Issue on Diffraction)

    Google Scholar 

  255. S. Weisbrod, L.A. Morgan: “RCS Matrix Studies of Sea Clutter”, NAVAIR Systems Command, Rpt. R2–79, Teledyne Micronetics, San Diego, CA (1979)

    Google Scholar 

  256. R. Rosien, D. Hammer, G. Ioannidis, J. Bell, J. Nemit: “Implementation Techniques for Polarization Control in ECCM”; RADC-TR-79–4, Griffis AFB, Rome, NY (1979)

    Google Scholar 

  257. W-M. Boerner: “Polarization Microwave Holography: An Extension of Scalar to Vector Holography”, Intern. Opt. Computing Cong., SPIE’s Techn. Symposium East, April 9, 1980, Washington D.C., Paper No.231–23

    Google Scholar 

  258. W-M. Boerner: “Polarization Dependence in Electromagnetic Inverse Problems”, IEEE Trans. AP-29 (in preparation)

    Google Scholar 

  259. De Santo, J.A. (ed.): Ocean Acoustics, Topics in Applied Physics,Vol. 32 ( Springer, Berlin, Heidelberg, New York 1979 )

    Google Scholar 

  260. Silvia, M.T., Robinson, E.A.: “Deconvolution of Geophysical Time Series in the Exploration for Oil and Natural Gas”, Developments in Petroleum Science 10 (Elsevier 1979 )

    Google Scholar 

  261. Gal’perin, E.I.: “Vertical Seismic Profiling”, translated by A.J. Hermont, ed. by J.E. White (Society of Exploration Geophysicists, Special Publication No.12 1974 )

    Google Scholar 

  262. Preston, K., Jr., Taylor, K.J.W., Johnson, S.A., Ayers, W.R. (eds.): Medical Imaging Techniques - A Comparison ( Plenum Press, New York 1979 )

    Google Scholar 

  263. Larsen, L.E., Jacobi, J.H.: Microwave interrogation of dielectric targets. Part I: By scattering parameters; Part II: By microwave time delay spectroscopy. Med. Phys. 5 (6), 500–513 (1979)

    Google Scholar 

  264. Larsen, L.E., Jacobi, J.H.: Microwave scattering parameter imagery of an isolated carine kidney. Med. Phys. 6 (5), 394–403 (1979)

    Google Scholar 

  265. Van der Pol, B., Bremmer, H.: Operational Calculus (Based on the Two-Sided Laplace Transform) (Cambridge University Press 1955 )

    MATH  Google Scholar 

  266. Bath, M.: Mathematical Aspects of Seismology ( Elsevier, Amsterdam 1968 )

    Google Scholar 

  267. Bath, M.: Introduction to Seismology ( Birkhäuser, Basel and Stuttgart 1973 )

    Google Scholar 

  268. Bath, M.: Spectral Analysis in Geophysics ( Elsevier, Amsterdam 1974 )

    Google Scholar 

  269. Dobrin, M.B.: Introduction to Geophysical Prospecting, 3rd edn. ( McGraw-Hill, New York 1976 )

    Google Scholar 

  270. Jenkins, G.M., Watts, D.G.: Spectral Analysis and Its Applications (Holden-Day, San Francisco, Calif. 1968 )

    MATH  Google Scholar 

  271. Grant, F.S., West, G.F.: Interpretation Theory in Applied Geophysics ( McGraw-Hill, New York 1965 )

    Google Scholar 

  272. Dike, G.A., Burt, E.C., Wallenberg, R.F.: “An Application of GTD and PO to Object Identification Through Inverse Scattering”, Intern. Symp. IEEE-APS/URSI-B, Québec, Special Session III on Inverse Scattering 1980

    Google Scholar 

  273. Cherry, S.M., Goddard, J.W.F., Hall, M.P.M.: “Examination of rain dron sizes using a dual-polarization radar”, 19th Conf. on Radar Meteorology, 15–18 April 1980, Miami Beach, F1.

    Google Scholar 

  274. Babič, V.M., Kirpičnikova, N.Y.: The Boundary-Layer Method in Diffraction Problems, Springer Series in Electrophysics, Vol. 3 ( Springer, Berlin, Heidelberg, New York 1979 )

    Google Scholar 

  275. Babič, V.M.: Mathematical Questions in the Theory of Wave Diffraction and Propagation, STEKLO/114–LC. 74–2363, ISBN 0–8218–3015–5, AMS Catalogue 1979

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boerner, WM. (1980). Polarization Utilization in Electromagnetic Inverse Scattering. In: Baltes, H.P. (eds) Inverse Scattering Problems in Optics. Topics in Current Physics, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81472-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81472-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81474-7

  • Online ISBN: 978-3-642-81472-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics