Selektionsprozeduren

  • Guido Giani
Conference paper
Part of the Medizinische Informatik und Statistik book series (MEDINFO, volume 17)

Zusammenfassung

Nicht selten soll mit statistischen Methoden eine Aussage getroffen werden, die die Rangordnung von k gegebenen Populationen bezüglich eines interessierenden Kriteriums betrifft. Werden die k Populationen zum Beispiel durch verschiedene Getreidesorten gekennzeichnet und ist das Kriterium, mit dem zwei Sorten verglichen werden, der Ertrag (genauer: der mittlere Ertrag), so möchte der Anwender wissen, welche Getreidesorte den größten Ertrag bringt. Oder stehen verschiedene Werbestrategien zur Verfügung, um ein Produkt auf dem Markt durchzusetzen, so soll diejenige ausgewählt werden, die den größten Anteil an potentiellen Käufern liefert. Im medizinischen Bereich könnte interessieren, welches von mehreren Medikamenten zur Behandlung einer Krankheit das beste ist, das kann beispielsweise heißen, welches Medikament für eine ausgezeichnete reellwertige Variable den größten (mittleren) Wert liefert, wenn der therapeutische Wert des Medikaments um so größer ist, je größere Werte die Variable annimmt. Aber nicht nur für das Problem, die “Beste” unter k Populationen zu benennen, auch mit Selektionsvorschriften komplexerer Art wie unten angeführt hat der Anwender durchaus zu tun. Eine Vielzahl von weiteren praxisrelevanten Fragestellungen zu Selektionsproblemen und deren Behandlung findet man in Gibbons, Olkin, Sobel (1977).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referenzen

  1. Alam, K. u. Rizvi, M.H. (1966). Selection form multivariate populations. Ann. Inst. Statist. Math. 18, 307–318.CrossRefMATHMathSciNetGoogle Scholar
  2. Alam, K. u. Thompson, J.R. (1971). A selection procedure based on ranks. Ann. Inst. Statist. Math. 23, 253–262.CrossRefMATHMathSciNetGoogle Scholar
  3. Barlow, R.E. u. Gupta, S.S. (1969). Selection procedures for restricted families of probability distributions. Ann. Math. Statist. 40, 905–917.CrossRefMATHMathSciNetGoogle Scholar
  4. Bartlett, N.S. u. Govindarajulu, Z. (1968). Some distribution-free statistics and their application to the selection problem. Ann. Inst. Statist. Math. 20, 79–97.CrossRefMATHMathSciNetGoogle Scholar
  5. Bechhofer, R.E. (1954). A single-sample multiple decision procedure for ranking means of normal populations with variances. Ann. Math. Statist. 25, 16–39.CrossRefMATHMathSciNetGoogle Scholar
  6. Bechhofer, R.E., Dunnet, C.W. u. Sobel, M. (1954). A two-sample multiple decision procedure for ranking means of normal populations with a common unknown variance. Biometrika 41, 170–176.MATHMathSciNetGoogle Scholar
  7. Bechhofer, R.E., Santner, T.J. und Turnbull, B.W. (1977). Selecting the largest interaction in a two-factor experiment. Statistical Decision Theory and Related Topics, Vol. 2 (Ed., Gupta, S.S. u. Moore, D.S.). New York: Akademic Press.Google Scholar
  8. Bechhofer, R.E. u. Sobel, M. (1958). Nonparametric procedures for selecting that one of k populations which has the highest probability of yielding the largest observation. Ann. Math. Statist. (abstract) 29, 325.CrossRefGoogle Scholar
  9. Berger R.L. (1977). Minimax, admissible, and gamma-minimax multiple decision rules. Mimeo. Ser. No. 489, Dept. of Statistics, Purdue University, West Lafayette, Indiana.Google Scholar
  10. Blumenthal, S. u. Patterson, D.W. (1969). Rank order procedures for selecting a subset containing the population with the smallest scale parameter. Sankhya 31A, 37–42.MathSciNetGoogle Scholar
  11. Carroll, R.J., Gupta, S.S. u. Huang, D.-Y. (1975). Selection procedures for the t best populations. Commun. Statist. A4, 987–1008.MathSciNetGoogle Scholar
  12. Desu, M.M. (1970). A selection problem. Ann. Math. Statist. 41, 1596–1603.CrossRefMATHMathSciNetGoogle Scholar
  13. Desu, M.M. u. Sobel, M. (1971). Nonparametric procedures for selecting fixed-size subsets. Statistical Decision Theory and Related Topics (Ed., Gupta, S.S. u. Jackel, J.). New York: Academic Press.Google Scholar
  14. Dudewicz, E.J. (1971). Nonexistence of a single-sample selection procedure whose P(CS) is independent of the variances. S. Afr. Statist. J. 5, 37–39.Google Scholar
  15. Dudewicz, E.J. u. Dalai, S.R. (1975). Allocation of observations in ranking and selection with unequal variances. Sankhya 37B, 28–78.Google Scholar
  16. Dunnett, C.W. (1955). A multiple comparison procedure for comparing several treatments with a control. J. Amer. Statist. Ass. 50, 1096–1121.CrossRefMATHGoogle Scholar
  17. Ferguson, T.S. (1967). Mathematical Statistics. New York: Academic Press.MATHGoogle Scholar
  18. Gibbons, J.D., Olkin, J., Sobel, M. (1977). Selecting and ordering populations: a new statistical methodology. New York: John Wiley & Sons, Inc.MATHGoogle Scholar
  19. Gupta, S.S. (1965). On some multiple decision (ranking and selection) rules. Technometrics 7, 225–245.CrossRefMATHGoogle Scholar
  20. Gupta, S.S. u. Huang, D.-Y. (1977). Some multiple decision problems in analysis of variance. Commun. Statist. A6, 1035–1054.Google Scholar
  21. Gupta, S.S. u. Panchapakesan, S. (1972). On a class of subset selection procedures. Ann. Math. Statist. 43, 814–822.CrossRefMATHMathSciNetGoogle Scholar
  22. Gupta, S.S. u. Panchapakesan, S. (1974). Inference for restricted families: (A) Multiple decision procedures; (B) Order statistics inequalities. Reliability and Biometry: Statistical Analysis of Life-length (Ed., Proschan, F. u. Serfling, R.J.). Pennsylvania: Society for industrial and applied mathematics.Google Scholar
  23. Hall, W.J. (1958). Most economical multiple-decision rules. Ann. Math. Statist. 29, 1079–1094.CrossRefMATHMathSciNetGoogle Scholar
  24. Hall, W.J. (1959). The most-economical character of some Bechhofer and Sobel decision rules. Ann. Math. Statist. 30, 964–969.CrossRefMATHMathSciNetGoogle Scholar
  25. Hooper, J.H. u. Santner, T.J. (1979). Design of experiments for selection from ordered families of distribution. Ann. Statist. 7, 615–643.CrossRefMATHMathSciNetGoogle Scholar
  26. Lee, Y.J. u. Dudewicz, E.J. (1974). Nonparametric ranking and selection procedures. Technical Report No. 105, Dept. of Statistics, Ohio State Univ.Google Scholar
  27. Lehmann, E.L. (1961). Some model I problems of selection. Ann. Math. Statist. 32, 990–1012.CrossRefMATHMathSciNetGoogle Scholar
  28. Lehmann, E.L. (1963). A class of selection procedures based on ranks. Mathematische Annalen 150, 268–275.CrossRefMATHMathSciNetGoogle Scholar
  29. Mahamunulu, D.M. (1967). Some fixed-sample ranking and selection problems. Ann. Math. Statist. 38, 1079–1091.CrossRefMATHMathSciNetGoogle Scholar
  30. Naik, U.D. (1977). Some subset selection problems. Commun. Statist. A6, 955–966.MathSciNetGoogle Scholar
  31. Panchapakesan, S. u. Santner, T.J. (1977). Subset selection procedures for Δp-superior populations. Commun. Statist. A6, 1081–1090.Google Scholar
  32. Patel, J.K. (1976). Ranking and selection of IFR populations based on means. J. Amer. Statist. Ass. 71, 143–146.CrossRefMATHGoogle Scholar
  33. Puri, M.L. u. Puri, P.S. (1969). Multiple decision procedures based on ranks for certain problems in analysis of variance. Ann. Math. Statists. 40, 619–632.CrossRefMATHGoogle Scholar
  34. Puri, M.L. u. Sen, P.K. (1969). On some selection procedures in two-way layouts. Z. Wahrscheinlichkeitstheorie verw. Geb. 22, 242–250.MathSciNetGoogle Scholar
  35. Rizvi, M.H. u. Sobel, M. (1967). Nonparametric procedures for selecting a subset containing the population with the largest α-quantiles. Ann. Math. Statist. 38, 1788–1803.CrossRefMATHMathSciNetGoogle Scholar
  36. Rizvi, M.H. u. Woodworth, G.G. (1970). On selection procedures based on ranks: counterexamples concerning least favorable configuration. Ann. Math. Statist. 41, 1942–1951.CrossRefMATHMathSciNetGoogle Scholar
  37. Santner, T.J. (1976). A two stage procedure for selecting δ *-optimal means in the normal model. Commun. Statist. A5, 283–292.MathSciNetGoogle Scholar
  38. Sobel, M. (1967). Nonparametric procedures for selecting the t populations with the largest α-quantiles. Ann. Math. Statist. 38, 1804–1816.CrossRefMATHMathSciNetGoogle Scholar
  39. Wetherill, G.B. u. Ofosu, J.B. (1974). Selection of the best of k normal populations. Appl. Statist. 23, 253–277.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1980

Authors and Affiliations

  • Guido Giani
    • 1
  1. 1.Abteilung für Medizinische Statistik und DokumentationRWTH AachenGermany

Personalised recommendations