Import of Proteins into Mitochondria

  • N. Nelson
  • M.-L. Maccecchini
  • Y. Rudin
  • G. Schatz
Conference paper
Part of the Colloquium der Gesellschaft für Biologische Chemie 26.–28. April 1979 in Mosbach/Baden book series (MOSBACH, volume 30)


The biogenesis of mitochondria involves a close interaction between the nucleocytoplasmic and the mitochondrial genetic system. The majority of the mitochondrial proteins are synthesized on cytoplasmic ribosomes and transported into the organelle (1). The mechanism of this protein import has been under debate for many years (e.g., (2,3)). Recent experiments with yeast cells have shown that several cytoplasmic- ally made mitochondrial proteins are initially made as larger precursors, both in vitro as well as in pulse-labeled yeast spheroplasts (4,5). So far, larger precursors have been detected for the following cytoplasmically made mitochondrial proteins: the three largest subunits of the mitochondrial F1-ATPase (i.e., the α, β, and γ subunit, see (4)) and two subunits of the mitochondrial cytochrome bc1 complex (cytochrome c1 and subunit V; (5) and C. Côté, unpublished). Import of in vitro synthesized precursors into isolated mitochondria was demonstrated for the three largest F1-ATPase subunits; as an operational measure of import, we checked whether any of the polypeptides added to the mitochondria became resistant to externally added proteases (4).


Mitochondrial Protein Intermembrane Space Large Precursor Bongkrekic Acid Adenine Nucleotide Transporter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schatz G, Mason TL (1974) Annu Rev Biochem 43: 51–87CrossRefGoogle Scholar
  2. 2.
    Kadenbach B (1967)•Biochim Biophys Acta 134:430–442Google Scholar
  3. 3.
    Kellems RE, Butow RA (1972) J Biol Chem 247: 8043–8050PubMedGoogle Scholar
  4. 4.
    Maccecchini ML, Rudin Y, Blobel G, Schatz G (1979) Proc Natl Acad Sci USA 76: 343–347PubMedCrossRefGoogle Scholar
  5. 5.
    Côté C, Solioz M, Schatz G (1979) J Biol Chem 254: 1437–1439PubMedGoogle Scholar
  6. 6.
    Dobberstein B, Blobel G, Chua NH (1977) Proc Natl Acad Sci USA 74: 1082–1085PubMedCrossRefGoogle Scholar
  7. 7.
    Highfield PE, Ellis RJ (1978) Nature (London) 271: 420–424CrossRefGoogle Scholar
  8. 8.
    Chua NH, Schmidt GW (1978) Proc Natl Acad Sci USA 75: 6110–6114PubMedCrossRefGoogle Scholar
  9. 9.
    Djavadi-Ohaniance L, Schatz G (1978) J Biol Chem 253: 4402–4407PubMedGoogle Scholar
  10. 10.
    Sels AA, Cocriamont C (1968) Biochem Biophys Res Commun 32: 192–198PubMedCrossRefGoogle Scholar
  11. 11.
    Williams PG, Stewart PR (1976) Arch Microbiol l07: 63–70CrossRefGoogle Scholar
  12. 12.
    Kang CH, Brautigan DL, Osheroff N, Margoliash E (1978) J Biol Chem 253: 6502–6510PubMedGoogle Scholar
  13. 13.
    Chance B, Keyhani E, Saronio C (1978) Oxygen metabolism in yeast cells. In: Bacila M, Horecker BL, Stoppani AOM (eds) Biochemistry and genetics of yeast. Academic Press, London New York, p 17–48Google Scholar
  14. 14.
    Erecinska M, Oshino N, Cohn P, Brocklehurst E (1973) Biochim Biophys Acta 292: 1–12PubMedCrossRefGoogle Scholar
  15. 15.
    Maccecchini ML, Rudin Y, Schatz G (1979) J Biol Chem, in pressGoogle Scholar
  16. 16.
    Cleveland DW, Fischer SG, Kirschner MW, Laemmli UK (1977) J Biol Chem 252: 1102–1106PubMedGoogle Scholar
  17. 17.
    Yonetani T (1967) Methods Enzymol 10: 332–339CrossRefGoogle Scholar
  18. 18.
    Nelson N, Schatz G (1979) Proc Natl Acad Sci USA in pressGoogle Scholar
  19. 19.
    Zitomer RS, Hall BD (1976) J Biol Chem 251: 6320–6326PubMedGoogle Scholar
  20. 20.
    Korb H, Neupert W (1978) Eur J Biochem 91: 609–620PubMedCrossRefGoogle Scholar
  21. 21.
    Palmiter RD, Gagnon J, Walsh KA (1978) Proc Natl Acad Sci USA 75: 94–98PubMedCrossRefGoogle Scholar
  22. 22.
    Schölte HR, Weijers PJ, Wit-Peeters EM (1973) Biochim Biophys Acta 291: 764–773PubMedCrossRefGoogle Scholar
  23. 23.
    Klingenberg M, Riccio P, Aquila H, Buchanan BB, Grebe K (1976) Mechanism of carrier transport and the ADP, ATP carrier. In: Hatefi Y, Djavadi-Ohaniance L (eds) The structural basis of membrane function. Academic Press, London New York, p 293–311Google Scholar
  24. 24.
    Kolárov J, Subik J, Kovâc L (1972) Biochim Biophys Acta 267: 465–478PubMedCrossRefGoogle Scholar
  25. 25.
    Goldberg AL, St John AC (1976) Annu Rev Biochem 45: 747–803PubMedCrossRefGoogle Scholar
  26. 26.
    Campbell PN, Blobel G (1976) FEBS Lett 72: 215–226PubMedCrossRefGoogle Scholar
  27. 27.
    Neville DM, Chang TM (1978) Curr Top Membr Transp 10: 66–150Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • N. Nelson
  • M.-L. Maccecchini
  • Y. Rudin
  • G. Schatz
    • 1
  1. 1.BiocenterUniversity of BaselBaselSwitzerland

Personalised recommendations