Conformational Flexibility and Its Functional Significance in Some Protein Molecules

  • R. Huber
Part of the Colloquium der Gesellschaft für Biologische Chemie 26.–28. April 1979 in Mosbach/Baden book series (MOSBACH, volume 30)


The term “flexibility” in context with protein structures is used with a variety of meanings. For instance, both a protein molecule in random coil conformation and a molecule occurring as two different stable, but interconvertible conformers are named flexible. A precise definition of flexibility in a particular system requires determination of the number and geometry of the various conformers, their stability, the energy barriers separating the conformers, the kinetic parameters of interconversion and the thermal motion of the atoms within each conformer.


Tobacco Mosaic Virus Antibody Molecule Bovine Pancreatic Trypsin Inhibitor Tomato Bushy Stunt Virus Tobacco Mosaic Virus Coat Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Watenpaugh KD, Sieker LC, Herriott JR, Jensen LH (1973) Refinement of the model of a protein: Rubredoxin at 1.5 Â resolution. J Mol Biol 29: 943–956Google Scholar
  2. 2.
    Huber R, Kukla D, Bode W, Schwager P, Bartels K, Deisenhofer J, Steigemann W (1974) Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. J Mol Biol 89: 73–101PubMedCrossRefGoogle Scholar
  3. 3.
    McCammon JA, Karplus M (1977) Internal motions of antibody molecules. Nature (London) 268: 765–766 McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature (London) 267: 585–590CrossRefGoogle Scholar
  4. 4.
    Karplus M, McCammon JA /1979) Protein structural fluctuations during a period of 100 ps. Nature (London) 277: 578Google Scholar
  5. 5.
    Deisenhofer J, Steigemann W (1975) Crystallographic refinement of the structure of bovine pancreatic trypsin inhibitor at 1.5 Å resolution. Acta Crystallogr Sect B 31: 238–250CrossRefGoogle Scholar
  6. 6.
    Snyder GH, Rowan R, Karplus S, Sykes BD (1975) Complete tyrosine assignments in the high field 1H nuclear magnetic resonanse spectrum of bovine pancreatic trypsin inhibitor. Biochemistry 14: 3765–3777PubMedCrossRefGoogle Scholar
  7. 7.
    Wagner G, DeMarco A, Wuthrich K (1976) Dynamics of the aromatic amino acid residues in the globular conformation of the basic pancreatic trypsin inhibitor ( BPTI ). Biophys Struct Mech 2: 139–158Google Scholar
  8. 8a.
    Cochran W (1964) Interaction of X-rays with Phonons. In: Bac TA (ed) Phonons and phonon interaction. WA Benjamin Inc, New York Amsterdam, 102–180Google Scholar
  9. 8b.
    Laue M von (1960) Röntgenstrahleninterferenzen. Akademische Verlagsgesellschaft, Frankfurt a.M.Google Scholar
  10. 9a.
    Bode W, Schwager P, Huber R (1978) The transition of bovine trypsinogen to a trypsin-like state upon strong ligand binding. The refined crystal structures of the bovine trypsinogen-pancreatic trypsin inhibitor complex and of its ternary complex with Ile-Val at 1.9 Ä resolution. J Mol Biol 118: 99–112PubMedCrossRefGoogle Scholar
  11. 9b.
    Douzo P, Hui Bon Hoa G, Petsko GA (1974) Protein structure at sub-zero temperatures: Lysozyme-substrate complex in cooled mixed solvents. J Mol Biol 96: 367Google Scholar
  12. a. Singh T, Bode W (in preparation)Google Scholar
  13. b. Frauenfelder H, Petsko GA, Tsernoglou D (1979) X-ray diffraction reveals protein structural dynamics. Nature (London) in pressGoogle Scholar
  14. 11.
    Parak F, Formanek H (1971) Untersuchungen des Schwingungsanteils und des Kristallgitterfehleranteils des Temperaturfaktors in Myoglobin durch Vergleich von Mössbauer-Absorptionsmessungen mit Röntgenstrukturdaten. Acta Crystallogr Sect A 27: 573–578CrossRefGoogle Scholar
  15. 12.
    Huber R, Bode W (1978) Structural basis of the activation and action of trypsin. Acc Chem Res 11: 114–122CrossRefGoogle Scholar
  16. 13.
    Wiegand G, Kukla D, Scholze H, Jones TA, Huber R (1979) Crystal structure analysis of the tetragonal form and preliminary molecular model of pig-heart citrate synthase. Eur J Biochem 93: 41–50PubMedCrossRefGoogle Scholar
  17. 14.
    Huber R, Deisenhofer J, Colman PM, Mathushima M, Palm W (1976) Crystallographic structure studies of an IgG molecule and an Fc fragment. Nature (London) 264: 415–420CrossRefGoogle Scholar
  18. 15.
    Seegam GW, Smith CA, Schumaker VN (1979) Changes in quarternary structure of IgG upon reduction of interheavy-chain disulfide bond. Proc Natl Acad Sci. USA 76: 907–911Google Scholar
  19. 16.
    Bloomer AC, Campness JN, Bricogne G, Staden R, Klug A (1978) Protein disk of tobacco mosaic virus at 2.8 Å resolution showing the interactions within and between subunits. Nature (London) 276: 362–368CrossRefGoogle Scholar
  20. 17.
    Stubbs G, Warren S, Holmes K (1977) Structure of RNA and RNA binding site in tobacco mosaic virus from 4-Å map calculated from X-ray fibre diagrams. Nature (London) 267:216–221 Jardetzky O, Akasaka K, Vogel D, Morris S, Holmes KC (1978) Unusual segmental flexibility in a rigion of tobacco mosaic virus coat protein. Nature (London) 273: 564–566Google Scholar
  21. 18.
    Harrison SC, Olsen AJ, Schütt CE, Winkler FK, Bricogne G (1978) Tomato bushy stunt virus at 2.9 K resolution. Nature (London) 276: 368–373CrossRefGoogle Scholar
  22. 19.
    Sasaki K, Dockerill S, Adamiak DA, Tickle IJ, Blundell T (1975) X-ray analysis of glucagon and its relationship to receptor binding. Nature (London) 257: 751–757CrossRefGoogle Scholar
  23. 20.
    Knights RJ, Light A (1976) Disulphide bond-modified trypsinogen. J Biol Chem 251: 222–228PubMedGoogle Scholar
  24. 21.
    Bode W (1949) The transition of bovine trypsinogen to a trypsin-like state upon strong ligand binding. II. The binding of the pancreatic trypsin inhibitor and of isoleucine-valine and of sequentially related peptides to trypsinogen and to p-Guanidinobenzoate-trypsinogen. J Mol Biol 127: 357–374CrossRefGoogle Scholar
  25. 22.
    Bode W, Huber R (1976) Induction of the bovine trypsinogen-trypsin transition by peptides sequentially similar to the N-terminus of trypsin. FEB Lett 68: 231–236CrossRefGoogle Scholar
  26. 23.
    Nolte HJ, Neumann E (1979) Kinetics and mechanism for the conformational transition in p-guanidino-benzoate bovine trypsinogen induced by the isoleucine-valine dipeptide. Biophys Chem in pressGoogle Scholar
  27. 24.
    Kerr MA, Walsh KA, Neurath H (1975) Catalysis by serine proteases and their zymogens. A study of acyl intermediates by circular dichroism. Biochemistry 14: 5088–5094Google Scholar
  28. 25.
    Sweet RR, Wright HT, Janin J, Chothai CH, Blow DR (1979) Crystal structure of the complex of porcine trypsin with soybean trypsin inhibitor (Kunitz) at 2.6-Å resolution. Biochemistry 13: 4212–4228CrossRefGoogle Scholar
  29. 26.
    Sumper M, Lynen F (1972) The multienzyme systems of fatty acid biosynthesis. In: Jaenicke R, Helmreich E (eds) 23. Colloquium der Gesellschaft für Biologi-sche Chemie in Mosbach/Baden. Protein-protein interactions. Berlin Heidelberg New York, pp 365–393Google Scholar
  30. 27a.
    Jardetzky NW, Bray R.P, Conover WW, Jardetzky O, Geisler N, Weber K (1979) Differential mobility of the N-terminal headpiece in the lac-repressor protein. J Mol Biol 128: 259–264PubMedCrossRefGoogle Scholar
  31. 27b.
    Buck F, Rüterjans H, Beyreuther K (1978) H1 NMR study of the lactose repressor from Escherichia Coli. FEBS Lett 96: 335–338PubMedCrossRefGoogle Scholar
  32. 28.
    Colman PM, Delsenhofer J, Huber R, Palm W (1976) Structure of the human antibody molecule Kol (Immunoglobuline Gl): An electron density map at 5 Å resolution. J Mol Biol 100: 257–282PubMedCrossRefGoogle Scholar
  33. 29.
    Ely KR, Colman PM, Abola EE, Hess AC, Peabody DS, Parr DM, Connell GE, Laschinger CA, Edmundson AB (1978) Mobile Fe region in the Zie IgG2 myoglobulin: Comparison of crystals of the F(ab’)2 fragment and the intact immunoglobulin. Biochemistry 17: 820–823PubMedCrossRefGoogle Scholar
  34. 30.
    Silverton EW, Navia MA, Davies DR (1977) Three-dimensional structure of an intact human immunoglobulin. Proc Natl Acad Sci USA 74: 5140–5144PubMedCrossRefGoogle Scholar
  35. 31.
    Yguerabide J, Epstein HF, Stryer L (1970) Segment flexibility in an antibody molecule. J Mol Biol 51: 573–590PubMedCrossRefGoogle Scholar
  36. 32.
    Matsushima M, Marquart M, Jones TA, Colman PM, Bartels K, Huber R, Palm W (1978) Crystal structure of the human Fab fragment Kol and its comparison with the intact Kol molecule. J Mol Biol 121: 441–459PubMedCrossRefGoogle Scholar
  37. 33.
    Segal DM, Padlan EA, Cohen GH, Rudikoff S, Potter M, Davies DR (1974) The three-dimensional structure of a phosphoryl-choline-binding mouse immunoglobulin Fab and the nature of the anitgen binding site. Proc Natl Acad Sci USA 71: 4298–4302PubMedCrossRefGoogle Scholar
  38. 34.
    Deisenhofer J, Colman PM, Epp O, Huber R (1976) Crystallographic structural studies of a human Fc fragment. II. A complete model based on a fourier map at 3.5 Å resolution. Hoppe Seylers Z Physiol Chem 357: 1421–1434PubMedCrossRefGoogle Scholar
  39. 35.
    Deisenhofer J, Jones TA, Huber R, Sjödahl J, Sjöquist J (1978) Crystallization, crystal structure analysis and atomic model of the complex formed by a human Fc fragment and fragment B of protein A from staphylococcus aureus. Hoppe Seylers Z Physiol Chem 359: 975–985PubMedCrossRefGoogle Scholar
  40. 36a.
    Metzger H (1974) Effect of antigen binding on the properties of antibody. In: Doxon FJ, Kunkel HG (eds) Advances in Immunol, vol 18. Academic Press, London New York, pp 169–207Google Scholar
  41. 36b.
    Metzger H (1978) The effect of antigen on antibodies: recent studies. Top Mol Immunol 7: 119–152Google Scholar
  42. 37.
    Wright JK, Engel J, Jaton J-C (1978) Selective reduction and proteolysis in the hinge region of liganded and unliganded antibodies. Eur J Immunol 8: 309–314PubMedCrossRefGoogle Scholar
  43. 38a.
    Paques E, Huber R, Priess H (1979) Isolation of the globular region of the sub-component q of the Cl component of complement. Hoppe Seylers Z Physiol Chem 360: 177–183PubMedCrossRefGoogle Scholar
  44. 38b.
    Lin Tsan-Yen, Fletscher DS (1978) Interaction of human Clq with insoluble immunoglobulin aggregates. Immunochemistry 15: 107–117CrossRefGoogle Scholar
  45. 39.
    Porter RR (1977) Structure and activation of the early components of complement. Fed Proc Fed Am Soc Exp Biol 36: 2191–2196Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • R. Huber
    • 1
  1. 1.Max-Planck-Institut für BiochemieMartinsried bei MünchenGermany

Personalised recommendations