Skip to main content

Halbleiterlaser

  • Chapter
Optoelektronik I

Part of the book series: Halbleiter-Elektronik ((HALBLEITER,volume 10))

  • 148 Accesses

Zusammenfassung

Außer der üblicherweise in einem angeregten Elektronensystem beobachtbaren spontanen Strahlungsemission tritt bei Vorhandensein eines entsprechenden Strahlungsfeldes eine zusätzliche Emission auf, die den eigentlich inversen Vorgang zur Absorption darstellt. Diese bereits im Kapitel 2 beschriebene induzierte oder stimulierte Strahlungsemission [6.1] wurde bereits 1917 von A. Einstein bei einer theoretischen Ableitung des Planckschen Strahlungsgesetzes postuliert sowie von R. Ladenburg und H. Kopfermann erstmals 1928 experimentell nachgewiesen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 6

  1. Einstein; A.: Über die Quantentheorie der Strahlung. Phys. Z. 18 (1917) 121–128

    Google Scholar 

  2. Weber, J.: Amplification of Microwave Radiation by Substances not in Thermal Equilibrium. Trans. IRE, PGED 3 (1953) 1–4

    Google Scholar 

  3. Maiman: Stimulated Optical Radiation in Ruby. Nature 187 (1960) 493–494

    Article  Google Scholar 

  4. Bäsov, N.G.; Krokhin, O.N.; Popov, Y.M.: Indirect Interband Transitions and Radiation Absorption by Free Carriers; in Advances in Quantum Electronics, (Ed. Singer, J.R.) London: Columbia University Press 1961, S. 500–506, siehe Diskussionsbemerkung

    Google Scholar 

  5. Engler, W.E.; Garfinkel, M.: Characteristics of a Continuous High Power GaAs-Junction Laser. J. Appl. Phys. 35 (1964) 1736–1741

    Google Scholar 

  6. Pilkuhn, M., Rupprecht, H.; Woodall, J.: Continuous Stimulated Emission from a GaAs-Diode at 77K. Proc. IEEE 51 (1963) 12–43

    Google Scholar 

  7. Dyment, J.C.; D’Asaro, L.A.: Continuous Operation of GaAs Junction Lasers on Diamond Heat Sinks at 200 K. Appl. Phys. Lett. 11 (1967) 292–294

    Article  Google Scholar 

  8. Ripper, J.E.; Dyment, J.C.; D’Asaro, L.A.; Paoli, T.L.: Stripe-Geometry Double Heterostructure Junction Lasers: Mode Structure and cw Operation Above Room Temperature. Appl. Phys. Lett. 18 (1971) 155–157

    Article  Google Scholar 

  9. Mettler, K.: Effect or Dislocations on the Degradation of Silicon-Doped GaAs Luminescent Diodes. Siemens Forsch. — u. Entwickl. Ber. 1 (1972) 274–278

    Google Scholar 

  10. Petroff, P.; Hartman, R.L.: Defect Structure Introduced During Operation of Heterojunction GaAs Lasers. Appl. Phys. Lett. 23 (1973) 469–471

    Article  Google Scholar 

  11. Hartman, R.L.; Dyment, J.C.; Hwang, C.J.; Kuher, M.: Continuous Operation of GaAs-Ga1−xAlx As Double-Heterostructure Lasers with 30°C Half-Lifes Exeeding 1000h. Appl. Phys. Lett. 23 (1973) 181–183

    Article  Google Scholar 

  12. Nannichi, Y.; Hayashi, I.: Degradation of (Ga,AI)As Double Heterostructure Diode Lasers. J. Cryst. Growth 27 (1974) 126–132

    Google Scholar 

  13. Dyment, J.C.; Nash, I.R.; Hwang, C.J.; Rozgonyi, G.A.; Hartman, R.L., Marcos, H.M.; Haszko, S.E.: Threshold Reduction by the Addition of Phosphorus to the Ternary Layers of DoubleHeterostructure GaAs Lasers. Appl. Phys. Lett. 24 (1974) 481–484

    Article  Google Scholar 

  14. Kun, H.; Namizaki, H.; Ishii, M.; Ito, A.: Continuous Operation Over 10 000 h of GaAs/GaA1As Double-Heterostructure Laser without Lattice Mismatch Compensation. Appl. Phys. Lett. 27 (1975) 138–139

    Article  Google Scholar 

  15. Basov, N.G.; Bogdankovich, O.V.: Excitation of Semiconductor Lasers by a Beam of Fast Electrons in “Radiative Recombination in Semiconductors”, 7th Intern. Conf. on the Physics of Semiconductors. Paris: Dunod 1965, S. 225–233

    Google Scholar 

  16. Benoit à la Guillaume, C.; Debever, J.M.: Effect Laser par bombardement electronique. Siehe [6.13], S. 255–257

    Google Scholar 

  17. Hurwitz, C.E.; Keyes, R.J.: Electron-Beam-Pumped GaAs-Laser. Appl. Phys. Lett. 5 (1964) 139–141

    Article  Google Scholar 

  18. Klein, C.A.: Threshold Considerations for Electron-Beam-Pumped GaAs-Lasers. Bull. Am. Phys. Soc. 10 (1965) 387–388

    Google Scholar 

  19. Hora, H.: Calculations of Laser Excitation in a GaAs Anode by Slow Electrons. Z. Naturf. 20a (1965) 543–548

    Google Scholar 

  20. Weiser, K.; Woods, J.F.: Evidence for Avalanche Injection Laser in p-Type GaAs. Appl. Phys. Lett. 7 (1965) 225–228

    Google Scholar 

  21. Phelan, R.J. Jr.; Rediker, R.H.: Optically Pumped Semiconductor Laser. Appl. Phys. Lett. 6 (1965) 70–71

    Article  Google Scholar 

  22. Melngailis, I.: Optically Pumped Indium Arsenide Laser. IEEE J. Quant. Electron. QE-1 (1965) 104–105

    Google Scholar 

  23. Kelley, C.E.: Interactions Between Closely Coupled GaAs Injection Lasers. IEEE Trans. Electron Dev. 12 (1965) 1–4

    Article  Google Scholar 

  24. Gürs, K.: Der optisch gepumpte Festkörperlaser, S. 119–120

    Google Scholar 

  25. D. Rosenberger: Der Gaslaser, S. 225–228. In: Laser (Hrsg. Kleen, W.; Müller, R.) Berlin, Heidelberg, New York: Springer 1960

    Google Scholar 

  26. Krokhin, O.N.; Popov, Y.M.: Slowing Down Time of Non Equilibrium Current Carriers in Semiconductors. Soy. Phys. JETP 11 (1960) 1144–1146

    Google Scholar 

  27. Göbel, G.: Recombination Without k-Selection Rules in Dense Electron-Hole Plasmas in High-Purity GaAs Lasers. Appl. Phys. Lett. 24 (1974) 492–494

    Article  Google Scholar 

  28. Hildenbrand, O.; Faltermeier, B.O.; Pilkuhn, M.H.: Direct Determination of Reduced Band Gap and Chemical Potential in High-Purity GaAs. Sol. State Commun. 19 (1976) 841–849

    Article  Google Scholar 

  29. Pankove, J.I.; Annavedder, E.K.: Nomograph of the Temperature Dependence of the Fermi Level in a Degemerate Parabolic Band. J. Appl. Phys. 36 (1965) 39–48

    Article  Google Scholar 

  30. Lasher, G.J.: Threshold Relations and Diffraction Loss for Injection Lasers. IBM J. 7 (1963) 58–61

    Article  Google Scholar 

  31. Lasher, G.; Stern, F.: Spontaneous and Stimulated Recombination Radiation in Semiconductors. Phys. Rev. 133 (1964) A553–A563

    Article  Google Scholar 

  32. Pilkuhn, M.H.: Fundamentals of stimulated Emission in Semiconductors. J. Lumin. 7 (1973) 269–283

    Article  Google Scholar 

  33. Ettenberg, M.; Kressel, H.: Dependence of Threshold Current Density and efficiency on Fabry-Perot Cavity Parameters: Single Heterojunction (AIGa)As-GaAs Laser Diode. J. Appl. Phys. 43 (1972) 1204–1210

    Article  Google Scholar 

  34. Stern, F.: Gain-Current Relation for GaAs Lasers with n-Type and Undoped Active Layers. IEEE J. Quant. Electron. 9 (1973) 290–294

    Article  Google Scholar 

  35. Stern, F.: Dispersion of the Index of Refraction Near the Absorption Edge of Semiconductors. Phys. Rev. 133 (1964) A1653–A1664

    Article  Google Scholar 

  36. Engler, W.E.; Garfinkel, M.: Temperature Effects in Coherent GaAs Diodes. J. Appl. Phys. 34 (1963) 2746–2750

    Article  Google Scholar 

  37. Zachos, T.H.; Ripper, J.E.: Theory of Transverse Modes in GaAs Junction Lasers. IEEE J. Quant Electron. 4 (1968) 167

    Article  Google Scholar 

  38. Hakki, B.W.: Striped GaAs Lasers: Mode Size and Efficiency J. Appl. Phys. 46 (1975) 2723–2730

    Article  Google Scholar 

  39. Yonezu, H.; Sakuma, I.; Kobayashi, K.; Kamejima, T.; Ueno, M.; Nannichi, Y.: A GaAs-A1xGa1−xAs Double Heterostructure Planar Stripe Laser. Jap. J. Appl. Phys. 12 (1973) 1585–1592

    Article  Google Scholar 

  40. Dyment, J.C.: Hermite-Gaussian Mode Patterns in GaAs-Junction Lasers. Appl. Phys. Lett. 10 (1967) 84–86

    Article  Google Scholar 

  41. Lida, S.; Takata, K.; Unno, Y.: Spectral Behaviour Linewidth of (GaAI)As-GaAs Double Hterostructure Lasers at Room Temperature with Stripe Geometry Configuration. IEEE J. Quant. Electron. 9 (1973) 361–366

    Article  Google Scholar 

  42. Armstrong, J.A.; Smith, A.W.: Interferometric Measurement of Line Width and Noise in GaAs Lasers. Appl. Phys. Lett. 4 (1965) 196–198

    Article  Google Scholar 

  43. Ahearn, W.E.; Crowe, J.W.: Linewidth Measurements of cw Gallium Arsenide Lasers at 77K. IEEE J. Quant. Electron. 2 (1966) 597–602

    Article  Google Scholar 

  44. Lindström, C.; Janson, M.: 13 gym Wide Stripe cw GaAs/GaA1As DH Lasers Linear to More than 10 mW. Electron. Lett. 14 (1978) 172–174

    Article  Google Scholar 

  45. Casey, H.C. Jr.; Panish, M.B.; Merz, J.L.: Beam Divergence of the Emission from Double-Heterostructure Injection Lasers. J. Appl. Phys. 44 (1973) 5470–5475

    Article  Google Scholar 

  46. Ulbrich, R.; Pilkuhn, M.H.: Londitudinal Photon Flux Distribution in Low-Q Semiconductor Lasers. Appl. Phys. Lett. 16 (1970) 516–518

    Article  Google Scholar 

  47. Harth, W.; Siemsen, D.: Modulation Characteristics of Injection Lasers Including Spontaneous Emission - 1. Theory. AEU Arch. f. Elektronik u. Ubertr. (Electronics and Communication) 30 (1976) 343–348

    Google Scholar 

  48. Winstel, G.; Mettler, K.: Zur Trägerrekombination in einem GaAs-Injektionslaser. Siehe [6.13] S. 183–193. Nachdruck: Siemens Forsch. u. Entwickl. Ber. (1965)

    Google Scholar 

  49. Adams, M.J.: Rate Equations and Transient Phenomena in Semiconductor Lasers. Optoelectron. 5 (1973) 201–215

    Google Scholar 

  50. Suematsu, Y.; Akiba, S.; Hong, T.: Measurements of Spontaneous Factor of AlGaAs Double-Hetero-Structure Semiconductorlasers. IEEE J. Quant. Electron. 13 (1977) 596–600

    Article  Google Scholar 

  51. Boers, P.M.; Vlaaardingerbroek, M.T.; Danielsen, M.: Dynamic Behaviour of Semiconductor Lasers. Electron. Lett. 11 (1975) 206–208

    Article  Google Scholar 

  52. Hakki, B.W.; Mode Gain and Junction Current in GaAs Under Lasing Conditions. J. Appl. Phys. 45 (1974) 288–294

    Article  Google Scholar 

  53. Adams, M.J.: A Theory of Oscillations in the Output of GaAs Junctions Lasers. Phys. status solidi (a) 1 (1970) 143–152

    Article  Google Scholar 

  54. Goodwin, A.R.; Thompson, G.H.P.: Superlinear Dependence of Gain on Current Density in GaAs Injection Lasers. IEEE J. Quant. Electron. 6 (1970) 311–312

    Article  Google Scholar 

  55. Pinkas, E.; Miller, B.I.; Hayashi, I.; Foy, P.W.: GaAs-A1xGa1−xAs Double Heterostructure Lasers-Effect of Doping on Lasing Characteristics of GaAs. J. Appl. Phys. 43 (1972) 2827–2835

    Article  Google Scholar 

  56. Gürs, K.: Der Laser als Verstärker und Oszillator, S. 90–93. In: Laser (Hrsg. Kleen, W.; Müller, R.) . Berlin, Heidelberg, New York: Springer 1969

    Google Scholar 

  57. Konnerth, K.L.; Lanza, C.: Delay between Current Pulse and Light Emission of a Gallium Arsenide Injection Laser. Appl. Phys. Lett 4 (1964) 120–121

    Article  Google Scholar 

  58. Ettenberg, M.; Kressel, H.: Interfacial recombination at (AlGa)As/GaAs Heterojunction Structures. J. Appl. Phys. 47 (1976) 1538–1544

    Article  Google Scholar 

  59. Harth, W.: Properties of Injection Lasers at Large-Signal Modulation. AEU Arch. f. Electronik u. Ubertr. (Electronics and Communication) 29 (1975) 149–152

    Google Scholar 

  60. Danielsen, M.: A Theoretical Analysis for Gigabit/Second Pulse Code Modulation of Semiconductor Lasers. IEEE J. Quant. Electron. 12 (1976) 657–660

    Article  Google Scholar 

  61. Müller, R.: Modulationsverfahren, S. 423–458. In: Laser (Hrsg. Kleen, W.; Müller R.). Berlin, Heidelberg, New York: Springer 1969

    Google Scholar 

  62. Eguchi, R.G.; Steier, W.H.; Mann, M.M.; Lacina, W.B.: Simultaneous Mode Locking and Pulse Coupling of the CO2 Laser. Appl. Phys. Lett. 18 (1971) 406–408

    Article  Google Scholar 

  63. Kogelnik, H.; Schmidt, R.V. : Switched Directional Couplers. IEEE J. Quant. Electron. 12 (1976) 396–398

    Article  Google Scholar 

  64. Reinhart, F.K.; Logan, R.A.: Integrated Electro-Optic Intra-cavity Frequency Modulation of Double Heterostructure Injection Lasers. Appl. Phys. Lett. 27 (1975) 532–534

    Article  Google Scholar 

  65. Tien, P.K.: Integrated Optics and New Wave Phenomena in Optical Waveguides. Rev. Mod. Phys. 49 (1977) 361–420

    Article  Google Scholar 

  66. Petermann, K.: Theoretical Analysis of Spectral Modulation Behaviour of Semiconductor Injections Lasers. Opt. and Quant. Electron. 10 (1978) 233–242

    Google Scholar 

  67. Siemsen, D.; Angerstein, J.: Investigation of the Optical Behaviour of GaAs Lasers Operated with Pulse and Sinusoidal Modulation. Electron. Lett. 12 (1976) 432–434

    Article  Google Scholar 

  68. Tien Pei Lee, Dentai, A.G.: Power and Modulation Bandwidth of GaAs-AIGaAs High Radiance LED’s for Optical Communication Systems. IEEE J. Quant. Electron. 14 (1978) 150–159

    Article  Google Scholar 

  69. Heinen, J.; Huber, W.; Harth, W.: Light-Emitting Diodes with a Modulation Bandwidth of More than 1 GHz. Electron. Lett. 12 (1976) 553–554

    Google Scholar 

  70. Harth, W.; Huber, W.; Heinen, J.: Frequency Response of GaA1As Light-Emitting Diodes. IEEE Trans. Electron. Dev. 23 (1976) 478–480

    Article  Google Scholar 

  71. Zucker, J.: Closed-Form Calculation of the Transient Behaviour of (Al,Ga)As Double-Heterojunction LED’s. J. Appl. Phys. 49 (1978) 2543–2545

    Article  Google Scholar 

  72. Harth, W.; Amann, M.C.: Modulation Characteristics of Double-Heterostructure Superluminescent Diodes. Electron. Lett. 13 (1977) 291

    Article  Google Scholar 

  73. Hayashi, I.; Panish, M.B.; Reinhart, F.K.: GaAs-Al Ga1−xAs Double Heterostructure Injection Lasers. J. Appl. Phys. 42 (1971) 1929–1941

    Article  Google Scholar 

  74. Lockwood, H.F.; Kressel, H.; Sommers, H.S. Jr.; Hawrylo, F.Z.: An Efficient Large Optical Cavity Injection Laser. Appl. Phys. Lett. 17 (1970) 499–502

    Article  Google Scholar 

  75. Kressel, H.; Ettenberg, M.: Low-Threshold Double Heterojunction A1GaAs/GaAs Laser Diodes: Theory and experiment. J. Appl. Phys. 47 (1976) 3533–3537

    Article  Google Scholar 

  76. Thompson, G.H.B.; Henshall, G.D.; Whiteaway, J.E.A.; Kirkby, P.A.: Narrow-Beam Five-Layer (GaAI)AS/GaAs Hterostructure Lasers with Low Threshold and High Preak Power. J. Appl. Phys. 47 (1976) 1501–1514

    Article  Google Scholar 

  77. Tsang, W.T.: The Effects of Lateral Current Speeding, Carrier Out-Diffusion and Optical Mode Lasers on the Threshold Current Density of GaAs-Al Ga1−xAs Stripe-Geometry DH-Lasers. J. Appl. Phys. 49 (1978) 1031–1044

    Article  Google Scholar 

  78. Kobayashi, T.; Kawaguchi, H.; Furukawa, Y.: Lasing Characteristics of Very Narrow Planar Stripe Lasers. Jap. J. Appl. Phys. 16 (1977) 601–607

    Article  Google Scholar 

  79. Mettler, K.; Zschauer, K.-H.; Westermeier, H.; Wolf, D.-H.; Pawlik, D.; Meixner, H.: Laserdiode. Forschungsbericht des Bundesministeriums für Forschung- and Technologie and der Siemens AG. April 1968, Kz.NT 565 B

    Google Scholar 

  80. Angerstein, J.; Siemsen, D.: Modulation Charakteristics of Injection Lasers Including Spontaneous Emission - 2. Experiment. AEU Arch. f. Electronik u. Ubertr. (Electronics and Communications) 30 (1976) 477–480

    Google Scholar 

  81. Mettler, K.; Pawlik, D.; Westermeier, H.; Zschauer, K.-H.: GaAs/(GaAI)As-Streifenstrukturlaser für optische Nachrichtensysteme hoher Bitrate. DFG-Kolloq. f. opt. Nachrichtentechnik, Bochum, Febr. 1978

    Google Scholar 

  82. Tsang, W.T.; Logan, R.A.: Lateral-Current Confinement in a GaAs Planar Stripe-Geometrie and Channeled Substrate Buried DH-Laser Using Reverse-Biased p-n Junctions. J. Appl. Phys. 49 (1978) 2629–2637

    Article  Google Scholar 

  83. Kobayashi, K.; Lang, R.; Yonezu, H.; Matsumoto, Y.; Shinohara, T.; Sakuma, I.; Suzuki, T.; Hayashi, I.: Unstable Horizontal Transverse Modes and Their Stabilization with a New Stripe Structure. IEEE J. Quant. Electron. 13 (1977) 659–661

    Article  Google Scholar 

  84. Yonezu, H.; Matsumoto, Y.; Shinohara, T.; Sakuma, I.; Suzuki, T.; Kobayashi, K.; Lang, R.; Nannichi, Y.; Hayashi, I.: New Stripe Geometry Laser with High Quality Lasing Characteristics by Horizontal Transverse Mode Stabilization. - A Refraction Index Guiding with Zn Doping. Jap. J. Appl. Phys. 16 (1977) 209–210

    Article  Google Scholar 

  85. Aiki, K.; Nakamura, M.; Kuroda, T.; Umeda, J.: Channeled-Substrate Planar Structure (A1Ga)As Junction Lasers. Appl. Phys. Lett. 30 (1977) 649–651

    Article  Google Scholar 

  86. Figueroa, L.; Wang, S.: Curved Junction Stabilized Filament (CJSF) Double Heterostructure Injection Laser. Appl. Phys. Lett. 32 (1978) 55–57

    Article  Google Scholar 

  87. Botez, D.; Zory, P.: Constricted Double-Heterostructure (AlGa)As Diode Laser. Appl. Phys. Lett. 32 (1978) 261–263

    Article  Google Scholar 

  88. Scifres, D.R.; Streifer, W.; Burnham, R.D.: Curved Stripe GaAs: GaAlAs Diode Lasers and Waveguides. Appl. Phys. Lett. 32 (1978) 231–234

    Article  Google Scholar 

  89. Tsukada, T.: GaAs-Ga1−xA1 As Buried-Heterostructure Injection Lasers. J. Appl. Phys. 45 (1974) 4899–4906

    Article  Google Scholar 

  90. Kirkby, P.A.; Thompson, G.H.B.: Channeled Substrate Buried Heterostructure GaAs-(GaAl)As Injection Lasers. J. Appl. Phys. 47 (1976) 4578–4589

    Article  Google Scholar 

  91. Burnham, R.D.; Scifres, D.R.: Etched Buried Heterostructure GaAs/GaA1As Injection Lasers. Appl. Phys. Lett. 27 (1975) 510–511

    Article  Google Scholar 

  92. Itoh, K.; Asaki, K.; Inone, M.; Teramoto, E.: Embedded Stripe GaAs-GaAlAs Double-Heterostructure Lasers with Polycrystalline GaAsP Layers. IEEE J. Quant. Electron. 13 (1977) 623–627

    Article  Google Scholar 

  93. Tsang, W.T.; Logan, R.A.; Ilegems, M.: High-Power Fundamental-Transverse-Mode Stripe Buried Heterostructure Lasers with Linear Ligh-Current Characteristics. Appl. Phys. Lett. 32 (1978) 311–314

    Article  Google Scholar 

  94. Nagano, M.; Kasahara, K.: Dynamic Porperties of Transverse Junction Stripe Lasers. IEEE J. Quant. Electron. 13 (1977) 632–637

    Article  Google Scholar 

  95. Namizaki, H.; Kan, H.; Ishii, M.; Ito. A.: Transverse-JunctionStripe-Geometry Double-Heterostructur Lasers with Very Low Threshold Current. J. Appl. Phys. 45 (1975) 2785–2786

    Article  Google Scholar 

  96. Kumabe, H.; Tanaka, T.; Namizaki, H.; Ishii, M.; Susaki, W.: High Temperature Single-Mode cw Operation with a Junction-Up TJS Laser. Appl. Phys. Lett. 33 (1978) 38–39

    Article  Google Scholar 

  97. Lee, C.P.; Margalit, S.; Yariv, A.: GaAs-GaA1As Injection Lasers on Semi-Insulating Substrates Using Laterally Diffused Junctions. Appl. Phys. Lett. 32 (1978) 410–412

    Article  Google Scholar 

  98. Scifres, D.R.; Streifer, W.; Burnham, R.D.: Leaky Wave Room-Temperature Double Heterostructure GaAs:GaAlAs Diode Laser. Appl. Phys. Lett 29 (1976) 23–24

    Article  Google Scholar 

  99. Kajimura, T.; Saito, K.; Shige, N.; Ito, R.: Leaky-Mode Buried-Heterostructure AlGaAs Injection Lasers. Appl. Phys. Lett. 30 (1977) 590–591

    Article  Google Scholar 

  100. Coloman, J.J.; Holonyak, N. Jr.; Ludowise, M.J.; Wright, P.D.: In1−xGaxP1−zAs, Double Heterojunction Lasers. J. Appl. Phys. 47 (1976) 2015–2018

    Article  Google Scholar 

  101. Coloman, J.J.; Holonyak, N. Jr.; Ludowise, M.J.; Wright, P.D.; Chin, R.; Groves, W.O.; Keune, D.L.: Pulsed Room-Temperature Operation of In1−x Gax P1−z Asz Double Heterojunction Lasers at High Energy. Appl. Phys. Lett. 29 (1976) 167–169

    Article  Google Scholar 

  102. Hsieh, J.J.; Shen, C.C.: Room-Temperature cw Operation of Buried-Stripe Double-Heterostructure GaInAsP/InP Diode Lasers. Appl. Phys. Lett. 30 (1977) 429–431

    Article  Google Scholar 

  103. Hsieh, J.H.; Rossi, J.A.; Donneley, J.P.: Room-Temperature cw operation of GaInAsP/InP Double Heterostructure Diode Laser Emitting at 1, 1 4m. Appl. Phys. Lett. 28 (1976) 709–711

    Article  Google Scholar 

  104. Kressel, H.; Olsen, G.H.; Nuese, C.J.: Visible GaAs0.7P0.3 cw Heterojunction Lasers. Appl. Phys. Lett 30 (1977) 249–251

    Article  Google Scholar 

  105. Chin, R.; Holonyak, N. Jr.; Shichijo, H.H.; Groves, W.O.; Keune, D.L.; Rossi, J.A.: GaAs1−yPy Heterojunction Lasers. J. Appl. Phys. 48 (1977) 3991–3993

    Article  Google Scholar 

  106. Nahory, R.E.; Pollack, M.A.; Abrokwah, J.K.: Threshold Characteristics and Extended Wavelength Operation of GaAs1−xGaAs1−xSbx/AlyGa1−yAs1−xsbx Double-Heterostructure Lasers. J. Appl. Phys. 48 (1977) 3988–3990

    Article  Google Scholar 

  107. Pollack, M.A.; Nahory, R.E.: CW Double Heterostructure LED and Laser Sources for the 1µm Wavelength Region. Int. Conf. on Integrated Optics, Salt Lake City, 1976

    Google Scholar 

  108. Hesse, J.; Preier, H.: Lead Salt Laser Diodes. In: Festkörperprobleme XV. (Hrsg. Queisser, H.J.) Braunschweig: Vieweg 1975, S. 229–251

    Chapter  Google Scholar 

  109. Linden, K.J.; Nill, K.W.; Butler, J.F.: Single Heterojunction Lasers of PbS1−xSex and Pb1−xSnxSe with Wide Tunability. IEEE J. Quant Electron. 13 (1977) 720–724

    Article  Google Scholar 

  110. Lo, W.: Homojunction Lead-Tin-Telluride Diode Lasers with Increased Frequency Tuning Range. IEEE J. Quant Electron. 13 (1977) 591–595

    Article  Google Scholar 

  111. Groves, S.H.; Nill, K.W.; Strauss, A.J.: Double Heterostructure Pb1−xSn.Te-PbTe Lasers with cw operation at 77K. J. Appl. Phys. Lett 25 (1974) 331–333

    Article  Google Scholar 

  112. Kogelnik, H.; Shank, C.V.: Stimulated Emission in a Periodic Structure. Appl. Phys. Lett. 18 (1971) 152–154

    Article  Google Scholar 

  113. Nakamura, M.; Aiki, K.; Umeda, J.: CW Operation of Distributed-Feedback GaAs-GaA1As Diode Lasers at Temperatures up to 300 K. Appl. Phys. Lett. 27 (1975) 403–405

    Google Scholar 

  114. Burnham, R.D.; Scifres, D.R.; Streifer, W.: Distributed Feedback Buried Heterostructure Diode Laser. Appl. Phys. Lett. 29 (1976) 287–289

    Article  Google Scholar 

  115. Walpole, J.N.; Calawa, A.R.; Chinn, S.R.; Groves, S.H.; Harman, T.C.: Distributed Feedback Pb1−xSnx-Te Double heterojunction Lasers. Appl. Phys. Lett. 29 (1976) 307–309

    Article  Google Scholar 

  116. Scifres, D.R.; Burnham, R.D.; Streifer, W.: Output Coupling an and Distributed Feedback Utilizing Substrate Corrugation in Double-Heterostructure GaAs Lasers. Appl. Phys. Lett. 27 (1975) 295–297

    Article  Google Scholar 

  117. Aiki, K.; Nakumura, M.; Umeda, J.: Frequency Multiplexing Light Source with Monolithically Integrated Distributed-Feedback Diode Lasers. Appl. Phys. Lett. 29 (1976) 506–508

    Article  Google Scholar 

  118. Merz, J.L.; Logan, R.A.: Integrated GaAs-AlxGa1−xAs Injection Lasers and Detectors with Etched reflectors. Appl. Phys. Lett. 30 (1977) 530–533

    Article  Google Scholar 

  119. Lee, C.P.; Margalit, S.; Ury, I.; Yario, A.: Integration of an Injection Laser with a Gunn Oscillator on a Semi-Insulating GaAs Substrate. Appl. Phys. Lett. 32 (1978) 806–807

    Article  Google Scholar 

  120. Merz, J.L.; Logan, R.A.: Dual-Beam Laser: A GaAs Double-Cavity Laser with Branching Output Waveguides. Appl. Phys. Lett. 32 (1978) 661–663

    Article  Google Scholar 

  121. Scifres, D.R.; Burnham, R.D.; Streifer, W.: Branching Waveguide Coupler in a GaAs/GaA1As Injection Laser. Appl. Phys. Lett. 32 (1978) 658–661

    Article  Google Scholar 

  122. Shams, M.K.; Namizaki, H.; Wang, S.: pn-Junction Detector Directly Integrated with (Ga1−xAlx )As LOC-DBR Laser. Appl. Phys. Lett 32 (1978) 179–181

    Article  Google Scholar 

  123. Shams, M.K.; Namizaki, H.; Wang, S.: Monolithic Integration of GaAs-(GaAI)As Light Modulators and Distributed Bragg-Reflector Lasers. Appl. Phys. Lett. 32 (1978) 314–316

    Article  Google Scholar 

  124. Campbell, J.C.; DeWinter, J.C.; Pollack, M.A.; Nahory, R.E.: Buried Heterojunction Electroabsorption Modulator. Appl. Phys. Lett. 32 (1978) 471–473

    Article  Google Scholar 

  125. Phelan, R.J.; Rediker, R.H.: Optically Pumped Semiconductor Laser. Appl. Phys. Lett. 6 (1965) 70–71

    Google Scholar 

  126. Kawabe, M.; Kotani, H.; Matsuda, K.; Namba, S.: Heterostructure CdS1−xSexCdS Surface Lasers for Integrated Optics. Appl. Phys. Lett. 26 (1975) 46–48

    Article  Google Scholar 

  127. Wolford, D.J.; Streetman, B.G.; Nelson, R.J.; Holonyak, N.Jr.: Stimulated Emission on Nx (“A-Line”) Recombination Transitions in Nitrogen Implanted GaAs1−xPx (x = 0,37). Appl. Phys. Lett. 28 (1976) 711–713

    Article  Google Scholar 

  128. Makita, Y.; Gonda, S.; Ijuin, H.: Stimulated and Laser Emission Involving Nitrogen Isoelectronic Impurities in AlxGa1−xAs (x = 0, 39, 77K). Appl. Phys. Lett. 29 (1976) 309–311

    Article  Google Scholar 

  129. Miller, R.C.; Nordland, W.A. Jr.; Logan, R.A.; Johnson, L.F.: Optically Pumped Taper-Coupled GaAs-AlxGa1−xAs Laser with a Second-Order Bragg Reflector. J. Appl. Phys. 49 (1978) 539–542

    Article  Google Scholar 

  130. á la Guillaume, C.B.; Debever, J.M.: Effet Laser Dans L’Arseniure D ‘Indium par Bombardement Electronique. Sol. State Commun. 2 (1964) 145–147

    Article  Google Scholar 

  131. Popov, Y.M.: Semiconductor Lasers. Appl. Opt. 6 (1967) 1818–1824

    Article  Google Scholar 

  132. Hurwitz, C.E.: Efficient Ultraviolett Laser Emission in ElectronBeam-Excited ZnS. Appl. Phys. Lett. 9 (1966) 116–118

    Article  Google Scholar 

  133. Gooch, C.H.: The Thermal Properties of Gallium Arsenide Laser Structures. IEEE J. Quant. Electron. 4 (1968) 140–143

    Article  Google Scholar 

  134. Quine, J.P.; Tomiyasu, K.; Younger, C.: Pulse Modulation or Gallium Arsenide Injection Luminescent Diode Laser. Proc. IEEE 51 (1963) 1141–1142

    Article  Google Scholar 

  135. Mayburg, S.: Temperature Limitation on Continuous Operation of GaAs Lasers. J. Appl. Phys. 34 (1963) 3417–3418

    Article  Google Scholar 

  136. Joyce, W.B.; Dixon, R.W.: Thermal Resistance of Heterostructure Lasers. J. Appl. Phys. 46 (1975) 855–862

    Article  Google Scholar 

  137. Kobayshi, T.; Iwane, G.: Three Dimensional Thermal Analysis of Double-Heterostructure Semiconductor Lasers. Jap. J. Appl. Phys. 16 (1977) 1403–1408

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Winstel, G., Weyrich, C. (1981). Halbleiterlaser. In: Optoelektronik I. Halbleiter-Elektronik, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81377-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81377-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09598-9

  • Online ISBN: 978-3-642-81377-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics