Advances in Hereditary Red Cell Enzyme Abnormalities

Conference paper
Part of the Recent Results in Cancer Research / Fortschritte der Krebsforschung / Progrès dans les recherches sur le cancer book series (RECENTCANCER, volume 69)


Since the discovery by Carson et al. [3] of glucose-6-phosphate dehydrogenase (G6PD) deficiency in patients with primaquine-induced hemolytic crisis, more than 20 different red cell enzymopathies with red cell dysfunction have been described. In addition several metabolic diseases can be diagnosed through detection of a specific enzyme defect in red cells, but do not alter red cell function and viability or normal oxygen carriage and delivery to the tissues. The main progress made during recent years in knowledge of the earlier described enzyme disorders concerns molecular and genetic mechanisms of the defects and the relationship between molecular anomalies, red cell dysfunction and pathological expression. In some instances, such as for G6PD, pyruvate kinase (PK) and glucose phosphate isomerase (GPI), the association of secondary postsynthetic modifications with the genetic primitive alteration has been pointed out. Finally, some new enzyme disorders with congenital nonspherocytic hemolytic anemia (CNSHA) have been described, and the percentage of CNSHA of unknown cause is continuously decreasing.


Pyruvate Kinase Mutant Enzyme Glucose Phosphate Isomerase G6PD Variant Pyruvate Kinase Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Black, J. A., Rittenberg, M. B., Standerfer, R. J., Peterson, J. S.: Hereditary persistence of fetal erythrocyte pyruvate kinase in the Basenji dog. In “The red cells”. Brewer, G. J. (ed.), pp. 275–290. New York: Liss 1978Google Scholar
  2. 2.
    Boivin, P., Galand, C.: La synthèse du glutathion au cours de l’anémie hémolytique congénitale avec déficit en glutathion réduit. Déficit congénital en glutathion synthétase érythrocytaire? Nouv. Rev. Fr. Hématol. 5, 707–716 (1965)PubMedGoogle Scholar
  3. 3.
    Carson, P. E., Flanagan, C. L., Ickes, C. E., Alving, A. S.: Enzymatic deficiency in primaquine sensitive erythrocytes. Science 124, 484–485 (1956)PubMedCrossRefGoogle Scholar
  4. 4.
    Giblett, E. L., Anderson, J. E., Cohen, F., Pollara, B., Meuwissen, H. J.: Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet 1972 II, 1067–1069CrossRefGoogle Scholar
  5. 5.
    Jaffe, E. R., Neumann, G., Rothberg, H., Wüson, F., Wetstar, R. M., Wolff, J. A.: Hereditary methemoglobinemia with and without mental retardation. Am. J. Med. 41, 42–55 (1966)CrossRefGoogle Scholar
  6. 6.
    Kahn, A.: G6PD variants. Hum. Genet. [Suppl. 1], 37–44 (1978)Google Scholar
  7. 7.
    Kahn, A., Marie, J.: Postsynthetic maturation of erythrocyte pyruvate kinase in patients with hereditary defect in this enzyme. In: “Model for the study of inborn errors of metabolism. Hommes, F. A. (ed.), pp. 191–204. Amsterdam: Elsevier/North Holland 1979Google Scholar
  8. 8.
    Kahn, A., Etiemble, J., Meienhofer, M. C., Boivin, P.: Erythrocyte phosphofructokinase deficiency associated with an unstable variant of muscle phosphofructokinase. Clin. Chim. Acta 61, 415–419 (1975)PubMedCrossRefGoogle Scholar
  9. 9.
    Kahn, A., Marie, J., Galand, C., Boivin, P.: Molecular mechanism of erythrocyte pyruvate kinase deficiency. Hum. Genet. 29, 271–280 (1975)CrossRefGoogle Scholar
  10. 10.
    Kahn, A., Van Biervliet, J. L., Vives-Corrons, J. L., Cottreau, D., Staal, G. E. J.: Genetic and molecular mechanisms of congenital defects in glucose phosphate isomerase activity. Studies of 4 families. Pediatr. Res. 11, 1123–1128 (1977)Google Scholar
  11. 11.
    Kahn, A., Marie, J., Garreau, H., Sprengers, E. D.: The genetic system of the L-type pyruvate kinase forms in man. Subunit structure, interrelation and kinetic characteristics of the pyruvate kinase enzymes from erythrocytes and liver. Biochim. Biophys. Acta 523, 59–74 (1978)PubMedGoogle Scholar
  12. 12.
    Kaplan, J. C., Leroux, A., Bakouri, S., Grangaud, J. P., Benabadji, M.: La lésion enzymatique dans la méthémoglobinémie congénitale récessive avec encéphalopathie. Description d’une nouvelle variante déficitaire de NADH-diaphorase (variante Beni-Messous). Nouv. Rev. Fr. Hématol. 14, 755–770 (1974)PubMedGoogle Scholar
  13. 13.
    Kuma, F., Prough, R. A., Mastiers, B. S. S.: Studies on methemoglobin reductase. Immunochemical similarity of soluble methemoglobin reductase and cytochrome b5 of human erythrocytes with NADH-cytochrome b5 reductase and cytochrome b5 of rat liver microsomes. Arch. Biochem. Biophys. 172, 600–607 (1976)PubMedCrossRefGoogle Scholar
  14. 14.
    Leroux, A., Junien, C., Kaplan, J. C., Bamberger, J.: Generalized deficiency of cytochrome b5 reductase in congenital methaemoglobinemia with mental retardation. Nature 258, 619–620 (1975)PubMedCrossRefGoogle Scholar
  15. 15.
    Meister, A.: The γ-glutamyl cycle: Diseases associated with specific enzyme deficiencies. Ann. Intern. Med. 81, 247–253 (1975)Google Scholar
  16. 16.
    Miwa, S., Nakashima, K., Ariyoshi, K., Shinohara, K., Oda, E., Tanaka, T.: Four new pyruvate kinase variants and a classical PK deficiency. Br. J. Haematol. 29, 157–169 (1975)PubMedCrossRefGoogle Scholar
  17. 17.
    Miwa, S., Fujii, H., Nakatsuji, T., Miura, Y., Asano, H., Asano, S.: A case of red cell adenosine deaminase over-production associated with hereditary hemolytic anemia. Paris, July 1978, 17th Congress of the International Society of Hematology. (Abstract, Vol. 1)Google Scholar
  18. 18.
    Rosa, R., Audit, I., Rosa, J.: Diphosphoglycerate muíase and 2,3-diphosphoglycerate phosphatase activities of red cells: comparative electrophoretic study. Biochem. Biophys. Res. Commun. 51, 536–542 (1973)PubMedCrossRefGoogle Scholar
  19. 19.
    Rosa, R., Audit, I., Beuzard, Y., Rosa, J.: Familial polycythemia associated with abnormalities of erythrocyte pyruvate kinase (PK). Blood 52 [Suppl. 1], 88 (1978)Google Scholar
  20. 20.
    Rosa, R., Preuhu, M. O., Beuzard, Y., Rosa, J.: 1st case of a complete deficiency of diphosphoglycerate mutase in human erythrocytes. J. Clin. Invest. 62, 907–915 (1978)PubMedCrossRefGoogle Scholar
  21. 21.
    Schmalstieg, F. C., Goldman, A. S., Mills, G. C., Monohan, T. M., Nelson, J. A., Goldblum, R. M.: Nucleotide metabolism in adenosine deaminase deficiency. Pediatr. Res. 10, 393–399 (1976)Google Scholar
  22. 22.
    Scott, E. M., Griffith, J. V.: The enzymatic defect of hereditary methemoglobinemia: Diaphorase. Biochim. Biophys. Acta 34, 584–586 (1959)PubMedCrossRefGoogle Scholar
  23. 23.
    Spielberg, S. P., Garrick, M. D., Corash, L. M., Butler, J. D., Tietze, F., Rogers, L., Schulman, J. D.: Biochemical heterogeneity in glutathione synthetase deficiency. J. Clin. Invest. 61, 1417–1420 (1978)PubMedCrossRefGoogle Scholar
  24. 24.
    Tarai, S., Okuno, G., Ikura, Y., Tanaka, T., Suda, M., Nishikawa, M.: Phosphofructokinase deficiency in skeletal muscle. A new glycogenosis. Biochem. Biophys. Res. Commun. 19, 517–523 (1965)CrossRefGoogle Scholar
  25. 25.
    Valentine, W. N., Fink, K., Paglia, D. E., Harris, S. R., Adams, W. S.: Hereditary hemolytic anemia with human erythrocyte pyrimidine 5′nucleotidase deficiency. J. Clin. Invest. 54, 866–879 (1974)PubMedCrossRefGoogle Scholar
  26. 26.
    Valentine, W. N., Paglia, D. E., Fink, K., Madoroko, G.: Lead poisoning. Association with hemolytic anemia, basophilic stippling, erythrocyte pyrimidine 5′nucleotidase deficiency and intra erythrocytic accumulation of pyrimidines. J. Clin. Invest. 58, 926–932 (1976)PubMedCrossRefGoogle Scholar
  27. 27.
    Valentine, W. N., Paglia, D. E., Tartaglia, A. P., Gilsan, F.: Hereditary hemolytic anemia with increased red cell adenosine deaminase (45 to 75 fold) and decreased adenosine triphosphate. Science 195, 783–785 (1977)PubMedCrossRefGoogle Scholar
  28. 28.
    Yoshida, A.: Hemolytic anemia and G6PD deficiency. Science 179, 532–537 (1973)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1979

Authors and Affiliations

  • A. Kahn
    • 1
  1. 1.Institut de Pathologie Moléculaire, U. 129 de l’INSERM, CHU CochinParis Cedex 14France

Personalised recommendations