Advertisement

Conformational Changes and Cooperation of Bacteriorhodopsin

  • B. Hess
  • R. Korenstein
  • D. Kuschmitz
Conference paper
Part of the Colloquium der Gesellschaft für Biologische Chemie book series (MOSBACH, volume 29)

Abstract

The mechanism of coupling between the photocycle and the vectorial proton transfer process of bacteriorhodopsin (BR) of the purple membrane of Halobacterium halobium implies an oriented and tight interaction between the chromophore and the protein conformation of BR within the structure of the purple membrane. Recently, the orientation of the transition dipole moment of the retinal chromophore in its dark state was analyzed by linear dichroism at 568 nm in thin layers of purple membrane of less than 1 μm to 4 μm thickness. We found an angle between the transition moment and the plane of the membrane of ≤ 27° (1), which is schematically drawn in the computed sequence model recently published by Ovchinnikov et al. (2) (see Fig. 1). It should be mentioned here that the direction of the chromophore (to the left or to the right) is not yet clarified. However, the picture illustrates the orientation of the chromophore at its approximate angle within a distribution of polar and nonpolar groups along the folds of the amino acid sequence thus far resolved.

Keywords

Electric Field Pulse Transition Dipole Moment Linear Dichroism Purple Membrane Relative Occupancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Korenstein, R., Hess, B.: FEBS Lett. 89, 15–20 (1978)PubMedCrossRefGoogle Scholar
  2. 2.
    Ovchinnikov, Y.A., Abdulaev, N., Feigina, M., Kislelev, A., Lobanov, N.: FEBS Lett. 84, 1–4 (1977)PubMedCrossRefGoogle Scholar
  3. 3.
    Korenstein, R., Chermann, W.V., Caplan, S.: Biophys. Struct, Mech. 2, 267–276 (1976)CrossRefGoogle Scholar
  4. 4.
    Henderson, R.: Ann. Rev. Biophys. Bioeng. 6, 87–109 (1977)CrossRefGoogle Scholar
  5. 5.
    Oesterhelt, D., Hess, B.: Eur. J. Biochem. 37, 316–326 (1973)PubMedCrossRefGoogle Scholar
  6. 6.
    Hess, B., Korenstein, R., Kuschmitz, D.: Hoppe-Seyler’s Z. Physiol. Chem. 359, 275 (1978)Google Scholar
  7. 7.
    Hess, B., Korenstein, R.: Proceedings of the Solvay Conference 1975, Adv. Chem. Phys., p. 224–227 (1975)Google Scholar
  8. 8.
    Henderson, R.: J. Mol. Biol. 93, 123–138 (1975)PubMedCrossRefGoogle Scholar
  9. 9.
    Heyn, M., Bauer, P., Dencher, N.: Biochem. Biophys. Res. Commun. 67, 897–963 (1975)PubMedCrossRefGoogle Scholar
  10. 10.
    Reed, T., Hess, B.: Fed. Proc. 35, Abstract 1227, 1599 (1976)Google Scholar
  11. 11.
    Kuschmitz, D., Hess, B.: Abstract of the 11th FEBS Meeting Copenhagen A 4/13/708, 1977Google Scholar
  12. 12.
    Becher, B., Cassim, J.: Biophys. J. 19, 285–297 (1977)PubMedCrossRefGoogle Scholar
  13. 13.
    Oesterhelt, D., Hartmann, R., Michel, H., Wagner, G.: Light-Driven Proton Translocation and Energy Conservation by Halobacteria. This volume, pp. 140–151 (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • B. Hess
  • R. Korenstein
  • D. Kuschmitz

There are no affiliations available

Personalised recommendations