Evolutionary Aspects of Biological Energy Conversion

  • H. Baltscheffsky
Part of the Colloquium der Gesellschaft für Biologische Chemie book series (MOSBACH, volume 29)


It is a great pleasure and privilege for me to begin this 29th Mosbacher Colloquium on Energy Conversion in Biological Membranes with a presentation of an evolutionary approach. By this approach one may pursue the important but difficult task of seeking information primarily about how, in molecular terms, it all began and how the present energy conversion systems of living cells evolved, by development of, and subsequent variations on, some apparently very ancient fundamental themes. However, I believe that the arrangers of this Colloquium share my optimistic conviction that the study of the molecular evolution of enzymes and pathways involved in biological energy conversion may be of value in an additional way. That is, not only for learning more about common molecular ancestries and paths of evolution, but also, and perhaps of particular significance in connection with this Colloquium, for tackling some of the unsolved fundamental mechanistic problems still existing in the area of biological energy conversion, in particular in photosynthetic and respiratory electron transport phosphorylation.


Protein Secondary Structure Energy Coupling Hydrogen Bond Pattern Concerted Change Electron Transport Phosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adman, E.G., Sieker, L.C., Jensen, L.H.: The structure of a bacterial ferredoxin. J. Biol. Chem. 248, 3987–3996 (1973)PubMedGoogle Scholar
  2. Baltscheffsky, H.: Inorganic pyrophosphate and the origin and evolution of biological energy transformation. In: Molecular evolution, Vol. 1. Buvet, R., Ponnamperuma, C. (eds.) pp. 466–474. Amsterdam-London: North-Holland 1972Google Scholar
  3. Baltscheffsky, H.: A new hypothesis for the evolution of biological electron transport. Origins of Life 5, 387–395 (1974a)PubMedCrossRefGoogle Scholar
  4. Baltscheffsky, H.: On the evolution of electron transport in photosynthesis and respiration. In: BBA Library 13, Dynamics of energy-transducing membranes. Ernster, L., Estabrook, R.W., Slater, E.C. (eds.) pp. 21–27. Amsterdam-London-New York: Elsevier 1974bGoogle Scholar
  5. Baltscheffsky, H.: Protein 8-structure and the molecular evolution of biological energy conversion. In: Living systems as energy converters. Buvet, R., Allen, M.J., Massué, J.-P. (eds.) pp. 81–88. Amsterdam: Elsevier/North Holland 1977Google Scholar
  6. Baltscheffsky, H., von Heijne, G., Blomberg, C.: Protein secondary structures and the molecular evolution of biological electron transport. In: Evolution of protein molecules. Matsubara, H., Yamanaka, T. (eds.). Tokyo: Japan University Press, in press 1978Google Scholar
  7. Baltscheffsky, H., von Stedingk, L.-V.: Bacterial photophosphorylation in the absence of added nucleotide. A second intermediate stage of energy transfer in light-induced formation of ATP. Biochem. Biophys. Res. Commun. 22, 722–728 (1966)PubMedCrossRefGoogle Scholar
  8. Baltscheffsky, H., von Stedingk, L.-V., Heldt, H.-W., Klingenberg, M.: Inorganic pyrophosphate: formation in bacterial photophosphorylation. Science 153, 1120–1121 (1966)PubMedCrossRefGoogle Scholar
  9. Baltscheffsky, M.: Conversion of solar energy into energy-rich phosphate compounds. In: Living Systems as Energy Converters. Buvet, R., Allen, M.J., Massué, J.-P. (eds.), pp. 199–207. Amsterdam: Elsevier/North Holland 1977Google Scholar
  10. Baltscheffsky, M., Randahl, H.: (1978) manuscript in preparationGoogle Scholar
  11. Boyer, P.D., Chance, B., Ernster, L., Mitchell, P., Racker, E., Slater, E.G.: Oxidative phosphorylation and photophosphorylation. Ann. Rev. Biochem. 46, 955–1026 (1977)PubMedCrossRefGoogle Scholar
  12. Boyer, P.D., Hackney, D.D., Choate, G.L., Janson, C.: Relations of protein conformation to enzyme catalysis and to proton and calcium transport. In: The proton and calcium pumps. Azzone, G.F., Avron, M., Metcalfe, J.C., Quagliariello, E., Siliprandi, N. (eds.), pp. 17–28. Amsterdam: Elsevier/North-Holland 1978Google Scholar
  13. Brack, A., Orgel, L.E.: 8-structures of alternating polypeptides and their possible prebiotic significance. Nature (London) 256, 383–387 (1975)CrossRefGoogle Scholar
  14. Brändén, C.-I., Eklund, H.: Coenzyme induced conformational changes and substrate binding in liver alcohol dehydrogenase. CIBA Foundation monograph No. 60 in press (1978)Google Scholar
  15. Bui, P.T., Mortenson, L.E.: Mechanism of the enzymic reduction of N2: The binding of adenosine-5’-triphosphate and cyanide to the N2-reducint system. Proc. Natl. Acad. Sci. U.S.A. 61, 1021–1027 (1968)PubMedCrossRefGoogle Scholar
  16. Carter, Jr., C.W., Kraut, J.: A proposed model for interaction of polypeptides with RNA. Proc. Natl. Acad. Sci. U.S.A. 71, 283–287 (1974)PubMedCrossRefGoogle Scholar
  17. Chandrasekhar, K., McPherson, Jr., A, Adams, M.J., Rossmann, M.G.: Conformation of coenzyme fragments when bound to lactate dehydrogenase. J. Mol. Biol. 76, 503–518 (1973)PubMedCrossRefGoogle Scholar
  18. Demerec, M.: In: Enzymes: units of biological structure and function. Gaebler, O.H. (ed.), pp. 131–134. New York: Academic Press 1956Google Scholar
  19. Dickerson, R.E., Timkovich, R.: Cytochromes c. In: The enzymes. Boyer, P. (ed.), Vol. XII, pp. 397–547. New York-San Francisco-London: Academic Press 1975Google Scholar
  20. Eilen, E., Krakow, J.S.: Cyclic AMP-mediated intersubunit disulfide crosslinking of the cyclic AMP receptor protein of Escherichia coli. J. Mol. Biol. 114, 47–60 (1977)PubMedCrossRefGoogle Scholar
  21. Fox, G.E., Magrum, L.J., Balch, W.E., Wolfe, R.S., Woese, C.R.: Classification of methanogenic bacteria by 165 ribosomal RNA characterization. Proc. Natl. Acad. Sci. U.S.A. 74, 4537–4541 (1977)PubMedCrossRefGoogle Scholar
  22. Hall, D.O., Cammack, R., Rao, K.K.: The iron-sulphur proteins: evolution of a ubiquitous protein from model systems to higher organisms. In: Cosmochemical evolution and the origins of life. Oró, J., Miller, S.L., Ponnamperuma, C., Young, R.S. (eds.) Vol. I, pp. 363–386. Dordrecht-Boston: Reidel 1974CrossRefGoogle Scholar
  23. Heijne, G.von, Blomberg, C., Baltscheffsky, H.: Early evolution of cellular electron transport: molecular models for the ferredoxin-rubredoxin-flavodoxin region. Origins of Life 9(1978)Google Scholar
  24. Horowitz, N.H.: On the evolution of biochemical syntheses. Proc. Natl. Acad. Sci. U.S.A. 31, 153–157 (1945)PubMedCrossRefGoogle Scholar
  25. Horowitz, N.H.: The evolution of biochemical syntheses–retrospect and prospect. In: Evolving genes and proteins. Bryson, V., Vogel, H.J. (ads.), pp. 15–23. New York-London: Academic Press 1965Google Scholar
  26. Kasahara, M., Penefsky, H.S.: Specific binding of Pi by beef heart mitochondrial ATPase. In: BBA Library 14, structure and function of energy-transducing membranes. van Dam, K., van Gelder, B.F. (eds.), pp. 295–305. Amsterdam-London-New York: Elsevier 1977Google Scholar
  27. Lumry, R.: Structure-function relationships in proteins and their possible bearing on the photosynthetic process. In: Photosynthetic mechanisms of green plants, pp. 625–634. NAS-NRC Publication 1145, 1963Google Scholar
  28. Mitchell, P.: Protonmotive chemiosmotic mechanisms in oxidative and photosynthetic phosphorylation. TIBS 3, N58 - N61 (1978)Google Scholar
  29. Nagle, J.F., Morowitz, H.J.: Molecular mechanisms for proton transport in membranes. Proc. Natl. Acad. Sci. U.S.A. 75, 298–302 (1978)PubMedCrossRefGoogle Scholar
  30. Orgel, L.E.: Evolution of the genetic apparatus. J. Mol. Biol. 38, 381–393 (1968)PubMedCrossRefGoogle Scholar
  31. Orgel, L.E.: A possible step in the origin of the genetic code. Isr. J. Chem. 10, 287–292 (1972)Google Scholar
  32. Pette, D., Luh, W., Bücher, Th.: A constant-proportion group in the enzyme activity pattern of the Embden-Meyerhof chain. Biochem. Biophys. Res. Commun. 7, 419–424 (1962)PubMedCrossRefGoogle Scholar
  33. Rossmann, M.G., Liljas, A., Brändén, C.-I., Banaszak, L.J.: Evolutionary and structural relationships among dehydrogenases. In: The enzymes. Boyer, P. (ed.) Vol. XI. pp. 61–102. New York-San Francisco-London: Academic Press 1975Google Scholar
  34. Ryrie, I.J., Jagendorf, A.T.: Correlation between a conformational change in the coupling factor protein and the high energy state in chloroplasts. J. Biol. Chem. 247, 4453–4459 (1972)PubMedGoogle Scholar
  35. Tanaka, M., Haniu, M., Yasunobu, K.T., Mortenson, L.E.: The amino acid sequence of Clostridium pasteurianum iron protein, a component of nitrogenase. J. Biol. Chen. 252, 7093–7100 (1977)Google Scholar
  36. Venyaminov, S.Y., Rodikova, L.P., Metlina, A.L., Poglazov, B.F.: Secondary structure change of Bacteriophage T4 sheath protein during sheath contraction. J. Mol. Biol. 98, 657–664 (1975)PubMedCrossRefGoogle Scholar
  37. Vogel, H., Bruschi, M., Le Gall, J.: Phylogenetic studies of two subredoxins from sulfate reducing bacteria. J. Mol. Evol. 9, 111–119 (1977)PubMedCrossRefGoogle Scholar
  38. Warrant, R.W., Kim, S.-H.: a-Helix-double helix interaction shown in the structure of a protamine-transfer RNA complex and a nucleoprotamine model. Nature (London) 271, 130–135 (1978)CrossRefGoogle Scholar
  39. Woese, C.R., Fox, G.E.: Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. U.S.A. 74, 5088–5090 (1977)PubMedCrossRefGoogle Scholar
  40. Zumft, W.G., Mortenson, L.E., Palmer, G.: Electron-paramagnetic-resonance studies on nitrogenase. Eur. J. Biochem. 46, 525–535 (1974)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • H. Baltscheffsky

There are no affiliations available

Personalised recommendations